Skip to main content
Log in

Nature of the empty states and signature of the charge density wave instability and upper Peierls transition of TTF-TCNQ by temperature-dependent NEXAFS spectroscopy

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic structure of TTF-TCNQ was studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in order to detect a spectroscopic signature of the phase transitions, especially that occurring at 54 K, which is related to a Peierls gap opening on the TCNQ stacks. All unoccupied TCNQ orbitals predicted by first-principles calculations and, in particular the pair σ (π(a g , b 3u )), located in the cyano groups, are clearly resolved in our experimental data. The latter orbital was observed for the first time in our NEXAFS spectra. The temperature dependence of NEXAFS peak intensities gives evidence of a subtle modification of the electronic structure when the charge density wave (CDW) fluctuations develop as the Peierls transition of the TCNQ stacks is approached from higher temperatures. These changes are explained on the basis of the charge transfer, the shape of the lower empty TCNQ molecular orbitals and the deformation of TCNQ during the pre-transitional CDW fluctuations. Finally the data suggest that the internal stack deformation consisting in a substantial out of plane displacement of the central ring with respect to the cyano-groups allows to gain C α -C α bonding energy which helps the stabilization of the Peierls transition on the TCNQ stack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Coronado, J.R. Galán-Mascarós, C.J. Gómez-García, V. Laukhin, Nature 408, 447 (2000)

    Article  ADS  Google Scholar 

  2. Highly Conducting Quasi-One-Dimensional Organic Crystals, Semiconductors and Semimetals, edited by E.M. Conwell (Academic Press, New York, 1988), Vol. 27

  3. T.J. Kistenmacher, T.E. Philips, D.O. Cowan, Acta Cryst. B 30, 763 (1974)

    Article  Google Scholar 

  4. S. Kagoshima, T. Ishiguro, H. Anzai, J. Phys. Soc. Jpn 41, 2061 (1976)

    Article  ADS  Google Scholar 

  5. S.K. Khanna, J.P. Pouget, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. B 16, 1468 (1977)

    Article  ADS  Google Scholar 

  6. F. Zwik, D. Jérome, G. Margaritondo, M. Onellion, J. Voit, M. Grioni, Phys. Rev. Lett. 81, 2974 (1998)

    Article  ADS  Google Scholar 

  7. M. Grioni, S. Pons, E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009)

    ADS  Google Scholar 

  8. D. Jérome, H. Schulz, J. Adv. Phys. 31, 299 (1982)

    Article  ADS  Google Scholar 

  9. J.P. Pouget, in Highly Conducting Quasi-One-Dimensional Organic Crystals, Semiconductors and Semimetals (Academic Press, New York, 1988), Vol. 27, Chap. 3, pp. 87–214

  10. D. Jérome, Chem. Rev. 104, 5565 (2004)

    Article  Google Scholar 

  11. J.P. Pouget, Z. Kristallogr. 219, 711 (2004)

    Article  Google Scholar 

  12. Y. Bouveret, S. Megtert, J. Phys. France 50, 1649 (1989)

    Article  Google Scholar 

  13. Z.Z. Wang, J.C. Girard, C. Pasquier, D. Jérome, K. Bechgaard, Phys. Rev. B 67, 121401(R) (2003)

    Article  ADS  Google Scholar 

  14. G. Shirane, S.M. Shapiro, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. B 14, 2325 (1976)

    Article  ADS  Google Scholar 

  15. J.E. Eldridge, Y. Lin, T.C. Mayadunne, L.K. Montgomery, S. Kaganov, T. Miebach, Solid State Commun. 105, 427 (1998)

    Article  ADS  Google Scholar 

  16. J.P. Pouget, S.K. Khanna, F. Denoyer, R. Comès, A.F. Garito, A.J. Heeger, Phys. Rev. Lett. 37, 437 (1976)

    Article  ADS  Google Scholar 

  17. J.P. Pouget, Physica B 407, 1762 (2012)

    Article  ADS  Google Scholar 

  18. W.D. Grobman, B.D. Silverman, Solid State Commun. 19, 319 (1976)

    Article  ADS  Google Scholar 

  19. M. Sing, J. Meyer, M. Hoinkis, S. Glavion, P. Blaha, G. Gavrila, C.S. Jacobsen, R. Claessen, Phys. Rev. B 76, 245119 (2007)

    Article  ADS  Google Scholar 

  20. J. Fraxedas, Y.J. Lee, I. Jimenez, R. Gago, R.M. Nieminen, P. Ordejón, E. Canadell, Phys. Rev. B 68, 195115 (2003)

    Article  ADS  Google Scholar 

  21. J. Fraxedas, S. Molas, A. Figueras, I. Jimenes, R. Gago, P. Auban-Senzier, M. Goffman, J. Solid St. Chem. 168, 384 (2002)

    Article  ADS  Google Scholar 

  22. C. Rojas, J. Caro, M. Grioni, J. Fraxedas, Surf. Sci. 482, 546 (2001)

    Article  ADS  Google Scholar 

  23. J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science (Springer, Heidelberg, 1992), Vol. 25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Chernenkaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernenkaya, A., Medjanik, K., Nagel, P. et al. Nature of the empty states and signature of the charge density wave instability and upper Peierls transition of TTF-TCNQ by temperature-dependent NEXAFS spectroscopy. Eur. Phys. J. B 88, 13 (2015). https://doi.org/10.1140/epjb/e2014-50481-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50481-9

Keywords

Navigation