The European Physical Journal B

, 87:32

Sums of variables at the onset of chaos

Regular Article

DOI: 10.1140/epjb/e2014-40882-1

Cite this article as:
Fuentes, M.A. & Robledo, A. Eur. Phys. J. B (2014) 87: 32. doi:10.1140/epjb/e2014-40882-1


We explain how specific dynamical properties give rise to the limit distribution of sums of deterministic variables at the transition to chaos via the period-doubling route. We study the sums of successive positions generated by an ensemble of initial conditions uniformly distributed in the entire phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward the attractors along the period-doubling cascade. And we explain how these properties transmit from the sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical structure with multifractal and discrete scale invariance properties.


Statistical and Nonlinear Physics

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Santa Fe InstituteSanta FeUSA
  2. 2.Centro Atómico Bariloche, Instituto Balseiro and CONICETBarilocheArgentina
  3. 3.Centro de Investigación en Complejidad Social, Facultad de GobiernoUniversidad del DesarrolloSantiagoChile
  4. 4.Instituto de Física y Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMéxicoMexico