Skip to main content
Log in

Influence of topology in the evolution of coordination in complex networks under information diffusion constraints

The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study the influence of the topological structure of social systems on the evolution of coordination in them. We simulate a coordination game (“Stag-hunt”) on four well-known classes of complex networks commonly used to model social systems, namely scale-free, small-world, random and hierarchical-modular, as well as on the well-mixed model. Our particular focus is on understanding the impact of information diffusion on coordination, and how this impact varies according to the topology of the social system. We demonstrate that while time-lags and noise in the information about relative payoffs affect the emergence of coordination in all social systems, some topologies are markedly more resilient than others to these effects. We also show that, while non-coordination may be a better strategy in a society where people do not have information about the payoffs of others, coordination will quickly emerge as the better strategy when people get this information about others, even with noise and time lags. Societies with the so-called small-world structure are most conducive to the emergence of coordination, despite limitations in information propagation, while societies with scale-free topologies are most sensitive to noise and time-lags in information diffusion. Surprisingly, in all topologies, it is not the highest connected people (hubs), but the slightly less connected people (provincial hubs) who first adopt coordination. Our findings confirm that the evolution of coordination in social systems depends heavily on the underlying social network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Axelrod, D.E. Axelrod, K.J. Pienta, Proc. Natl. Acad. Sci. 103, 13474 (2006)

    Article  ADS  Google Scholar 

  2. J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, 1982)

  3. W.H. Riker, Toward a history of game theory (Duke University Press, 1992), Vol. 24, p. 207

  4. W. Yoshida, R.J. Dolan, K.J. Friston, PLoS Comput. Biol. 4, e1000254 (2008)

    Article  MathSciNet  Google Scholar 

  5. J. Von Neumann, O. Morgenstern, Game Theory and Economic Behavior (Wiley, New York, 1944)

  6. J.F. Nash et al., Proc. Natl. Acad. Sci. 36, 48 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. J Maynard Smith, J. Theor. Biol. 47, 209 (1974)

    Article  MathSciNet  Google Scholar 

  8. J.M. Pacheco, F.C. Santos, M.O. Souza, B. Skyrms, Proc. Roy. Soc. B 276, 315 (2009)

    Article  Google Scholar 

  9. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  10. M.A. Nowak, S. Bonhoeffer, R.M. May, Proc. Natl. Acad. Sci. 91, 4877 (1994)

    Article  ADS  MATH  Google Scholar 

  11. X. Chen, L. Wang, Phys. Rev. E 77, 017103 (2008)

    Article  ADS  Google Scholar 

  12. Z. Rong, X. Li, X. Wang, Phys. Rev. E 76, 027101 (2007)

    Article  ADS  Google Scholar 

  13. R.T. Paine, The American Naturalist 100, 65 (1966)

    Article  Google Scholar 

  14. B. Skyrms, R. Pemantle, Proc. Natl. Acad. Sci. 97, 9340 (2000)

    Article  ADS  MATH  Google Scholar 

  15. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  16. J. Park, M.E.J. Newman, Phys. Rev. E 70, 066117 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003)

  18. Biological Networks, edited by F. Kepes (World Scientific, Singapore, 2007)

  19. H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006)

    Article  ADS  Google Scholar 

  20. P. Erdős, A. Rényi, Publicationes Mathematicae Debrecen 6, 290 (1959)

    MathSciNet  Google Scholar 

  21. A. Traulsen, J.C. Claussen, C. Hauert, Phys. Rev. E 74, 011901 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.S. Harré, S.R. Atkinson, L. Hossain, Eur. Phys. J. B 86, 1 (2013)

    Article  MathSciNet  Google Scholar 

  23. D.H. Wolpert, M. Harré, E. Olbrich, N. Bertschinger, J. Jost, Phys. Rev. E 85, 036102 (2012)

    Article  ADS  Google Scholar 

  24. M.S. Harré, J. Phys.: Conf. Ser. 410, 012045 (2013)

    ADS  Google Scholar 

  25. D. Wolpert, J. Jamison, D. Newth, M. Harre, BE J. Theor. Econ. 11, 1 (2011)

    MathSciNet  Google Scholar 

  26. B. Skyrms, Proc. Addresses Am. Philos. Assoc. 75, 31 (2001)

    Article  Google Scholar 

  27. R. Boyd, P.J. Richerson, Culture and the evolution of the human social instincts, Roots of human sociality (Berg Publishers, Oxford, 2006), pp. 453–477

  28. A.-L. Barabási, Science 325, 412 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)

    Article  ADS  Google Scholar 

  30. A.-L. Barabási, E. Bonabeau, Sci. Am. 288, 50 (2003)

    Article  Google Scholar 

  31. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Proc. Natl. Acad. Sci. 107, 11865 (2010)

    Article  ADS  Google Scholar 

  32. M. Mitchell, Artificial Intelligence 170, 1194 (2006)

    Article  MathSciNet  Google Scholar 

  33. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Eur. Phys. J. B 67, 291 (2009)

    Article  ADS  Google Scholar 

  34. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Eur. Phys. J. B 70, 275 (2009)

    Article  ADS  Google Scholar 

  35. F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Proc. Roy. Soc. B 273, 51 (2006)

    Article  Google Scholar 

  36. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  37. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  38. M.E.J. Newman, J. Stat. Phys. 101, 819 (2000)

    Article  MATH  Google Scholar 

  39. S. Milgram, Psychol. Today 1, 61 (1967)

    Google Scholar 

  40. D.J. Watts, Six Degrees: The Science of a Connected Age (Norton, New York, 2003)

  41. M. Rubinov, S.A. Knock, C.J. Stam, S. Micheloyannis, A.W.F. Harris, L.M. Williams, M. Breakspear, Hum. Brain Map. 30, 403 (2009)

    Article  Google Scholar 

  42. U. Alon, Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall, London, 2007)

  43. S.-J. Wang, C. Zhou, New J. Phys. 14, 023005 (2012)

    Article  ADS  Google Scholar 

  44. K. Hölttä, E.S. Suh, O. de Weck, in International Conference on Engineering Design (ICED05), edited by A. Samuel, W. Lewis (The Design Society, Melbourne, 2005), p. DS3560.1

  45. D. Kasthurirathna, A. Dong, M. Piraveenan, I.Y. Tumer, in Proceedings of the 2013 ASME International Design Engineering Technical Conferences, Portland, 2013

  46. Y.-Y. Ahn, J. Bagrow, S. Lehmann, arXiv:0903.3178 (2009)

    Google Scholar 

  47. D. Walker, S. Reay Atkinson, L. Hossain, in SOTICS 2012, The Second International Conference on Social Eco-Informatics, Venice, 2012, pp. 7–12

  48. R. Albert, A.-L. Barabási, Science 286, 509 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. S. Sarkar, A. Dong, in ASME 2011 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (IDETC/ CIE2011) (ASME, New York, 2011), Vol. 9, pp. 375–384

  50. R.V. Solé, S. Valverde, in Complex Networks, Lecture Notes in Physics, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, 2004), Vol. 650, pp. 189–207

  51. M. Piraveenan, M. Prokopenko, A. Zomaya, Networks and Heterogeneous Media 3, 441 (2012)

    Article  MathSciNet  Google Scholar 

  52. N. Masuda, K. Aihara, Phys. Lett. A 313, 55 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. E. Ahmed, A. Elgazzar, Eur. Phys. J. B 18, 159 (2000)

    Article  ADS  Google Scholar 

  54. L.-L. Jiang, M. Perc, Sci. Rep. 3, 2483 (2013)

    ADS  Google Scholar 

  55. M. Piraveenan, M. Prokopenko, L. Hossain, PloS one 8, e53095 (2013)

    Article  ADS  Google Scholar 

  56. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 66 (2012)

    Article  Google Scholar 

  57. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Europhys. Lett. 84, 28002 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharshana Kasthurirathna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasthurirathna, D., Piraveenan, M. & Harré, M. Influence of topology in the evolution of coordination in complex networks under information diffusion constraints. Eur. Phys. J. B 87, 3 (2014). https://doi.org/10.1140/epjb/e2013-40824-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40824-5

Keywords

Navigation