The European Physical Journal B

, 86:345

Bosonic transport through a chain of quantum dots

  • Anton Ivanov
  • Georgios Kordas
  • Andreas Komnik
  • Sandro Wimberger
Regular Article

DOI: 10.1140/epjb/e2013-40417-4

Cite this article as:
Ivanov, A., Kordas, G., Komnik, A. et al. Eur. Phys. J. B (2013) 86: 345. doi:10.1140/epjb/e2013-40417-4

Abstract

The particle transport through a chain of quantum dots coupled to two bosonic reservoirs is studied. For the case of reservoirs of non-interacting bosonic particles, we derive an exact set of stochastic differential equations, whose memory kernels and driving noise are characterised entirely by the properties of the reservoirs. Going to the Markovian limit an analytically solvable case is presented. The effect of interparticle interactions on the transient behaviour of the system, when both reservoirs are instantaneously coupled to an empty chain of quantum dots, is approximated by a semiclassical method, known as the Truncated Wigner approximation. The steady-state particle flow through the chain and the mean particle occupations are explained via the spectral properties of the interacting system.

Keywords

Mesoscopic and Nanoscale Systems

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anton Ivanov
    • 1
  • Georgios Kordas
    • 1
  • Andreas Komnik
    • 1
  • Sandro Wimberger
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany