Skip to main content
Log in

Emery vs. Hubbard model for cuprate superconductors: a composite operator method study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Within the composite operator method (COM), we report the solution of the Emery model (also known as p-d or three band model), which is relevant for the cuprate high-T c superconductors. We also discuss the relevance of the often-neglected direct oxygen-oxygen hopping for a more accurate, sometimes unique, description of this class of materials. The benchmark of the solution is performed by comparing our results with the available quantum Monte Carlo ones. Both single-particle and thermodynamic properties of the model are studied in detail. Our solution features a metal-insulator transition at half filling. The resulting metal-insulator phase diagram agrees qualitatively very well with the one obtained within dynamical mean-field theory. We discuss the type of transition (Mott-Hubbard (MH) or charge-transfer (CT)) for the microscopic (ab initio) parameter range relevant for cuprates getting, as expected a CT type. The emerging single-particle scenario clearly suggests a very close relation between the relevant sub-bands of the three- (Emery) and the single-band (Hubbard) models, thus providing an independent and non-perturbative proof of the validity of the mapping between the two models for the model parameters optimal to describe cuprates. Such a result confirms the emergence of the Zhang-Rice scenario, which has been recently questioned. We also report the behavior of the specific heat and of the entropy as functions of the temperature on varying the model parameters as these quantities, more than any other, depend on and, consequently, reveal the most relevant energy scales of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  2. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  3. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  4. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82, 2421 (2010)

    Article  ADS  Google Scholar 

  5. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  6. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  ADS  Google Scholar 

  7. V.J. Emery, G. Reiter, Phys. Rev. B 38, 4547 (1988)

    Article  ADS  Google Scholar 

  8. C.M. Varma, Solid State Commun. 62, 681 (1987)

    Article  ADS  Google Scholar 

  9. Y.B. Gaididei, V.M. Loktev, Phys. Status Solidi B 147, 307 (1988)

    Article  ADS  Google Scholar 

  10. V. Loktev, Fiz. Nizk. Temp. 22, 3 (1996)

    Google Scholar 

  11. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  12. A. Barabanov, R. Kuzian, L. Maksimov, Phys. Rev. B 55, 4015 (1997)

    Article  ADS  Google Scholar 

  13. R. Kuzian, R. Hayn, A. Barabanov, L. Maksimov, Phys. Rev. B 58, 6194 (1998)

    Article  ADS  Google Scholar 

  14. F.C. Zhang, Phys. Rev. B 39, 7375 (1989)

    Article  ADS  Google Scholar 

  15. S.B. Bacci, E.R. Gagliano, R.M. Martin, J.F. Annett, Phys. Rev. B 44, 7504 (1991)

    Article  ADS  Google Scholar 

  16. H.B. Schüttler, A.J. Fedro, Phys. Rev. B 45, 7588 (1992)

    Article  ADS  Google Scholar 

  17. R. Hayn, V. Yushankhai, S. Lovtsov, Phys. Rev. B 47, 5253 (1993)

    Article  ADS  Google Scholar 

  18. C.D. Batista, A.A. Aligia, Phys. Rev. B 47, 8929 (1993)

    Article  ADS  Google Scholar 

  19. M.E. Simón, A.A. Aligia, Phys. Rev. B 48, 7471 (1993)

    Article  ADS  Google Scholar 

  20. L.F. Feiner, J.H. Jefferson, R. Raimondi, Phys. Rev. B 53, 8751 (1996)

    Article  ADS  Google Scholar 

  21. M. Ogata, H. Shiba, J. Phys. Soc. Jpn 57, 3074 (1988)

    Article  ADS  Google Scholar 

  22. J.H. Jefferson, H. Eskes, L.F. Feiner, Phys. Rev. B 45, 7959 (1992)

    Article  ADS  Google Scholar 

  23. V.Y. Yushankhai, V.S. Oudovenko, R. Hayn, Phys. Rev. B 55, 15562 (1997)

    Article  ADS  Google Scholar 

  24. D.C. Peets et al., Phys. Rev. Lett. 103, 087402 (2009)

    Article  ADS  Google Scholar 

  25. P. Phillips, M. Jarrell, Phys. Rev. Lett. 105, 199701 (2010)

    Article  ADS  Google Scholar 

  26. D.C. Peets, D.G. Hawthorn, K.M. Shen, G.A. Sawatzky, R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. Lett. 105, 199702 (2010)

    Article  ADS  Google Scholar 

  27. T. Hotta, J. Phys. Soc. Jpn 63, 4126 (1994)

    Article  ADS  Google Scholar 

  28. T. Takimoto, T. Moriya, J. Phys. Soc. Jpn 66, 2459 (1997)

    Article  ADS  Google Scholar 

  29. T. Takimoto, T. Moriya, J. Phys. Soc. Jpn 67, 3570 (1998)

    Article  ADS  Google Scholar 

  30. S. Koikegami, K. Yamada, J. Phys. Soc. Jpn 69, 768 (2000)

    Article  ADS  Google Scholar 

  31. A. Kobayashi, A. Tsuruta, T. Matsuura, Y. Kuroda, J. Phys. Soc. Jpn 67, 2626 (1998)

    Article  ADS  Google Scholar 

  32. G. Dopf, A. Muramatsu, W. Hanke, Phys. Rev. B 41, 9264 (1990)

    Article  ADS  Google Scholar 

  33. R.T. Scalettar, D.J. Scalapino, R.L. Sugar, S.R. White, Phys. Rev. B 44, 770 (1991)

    Article  ADS  Google Scholar 

  34. G. Dopf, J. Wagner, P. Dieterich, A. Muramatsu, W. Hanke, Phys. Rev. Lett. 68, 2082 (1992)

    Article  ADS  Google Scholar 

  35. G. Dopf, A. Muramatsu, W. Hanke, Phys. Rev. Lett. 68, 353 (1992)

    Article  ADS  Google Scholar 

  36. K. Kuroki, H. Aoki, Phys. Rev. Lett. 76, 4400 (1996)

    Article  ADS  Google Scholar 

  37. T. Yanagisawa, S. Koike, K. Yamaji, Phys. Rev. B 64, 184509 (2001)

    Article  ADS  Google Scholar 

  38. T. Yanagisawa, M. Miyazaki, K. Yamaji, J. Phys. Soc. Jpn 78, 013706 (2009)

    Article  ADS  Google Scholar 

  39. M. Guerrero, J.E. Gubernatis, S. Zhang, Phys. Rev. B 57, 11980 (1998)

    Article  ADS  Google Scholar 

  40. Z.B. Huang, H.Q. Lin, J.E. Gubernatis, Phys. Rev. B 63, 115112 (2001)

    Article  ADS  Google Scholar 

  41. M. Zölfl, T. Maier, T. Pruschke, J. Keller, Eur. Phys. J. B 13, 47 (2000)

    Article  ADS  Google Scholar 

  42. Y. Ōno, R. Bulla, A. Hewson, Eur. Phys. J. B 19, 375 (2001)

    Article  ADS  Google Scholar 

  43. P.R.C. Kent, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, A. Macridin, T.A. Maier, M. Jarrell, T.C. Schulthess, Phys. Rev. B 78, 035132 (2008)

    Article  ADS  Google Scholar 

  44. C. Weber, K. Haule, G. Kotliar, Phys. Rev. B 78, 134519 (2008)

    Article  ADS  Google Scholar 

  45. L. de’Medici, X. Wang, M. Capone, A.J. Millis, Phys. Rev. B 80, 054501 (2009)

    Article  ADS  Google Scholar 

  46. X. Wang, L. de’Medici, A.J. Millis, Phys. Rev. B 81, 094522 (2010)

    Article  ADS  Google Scholar 

  47. C. Gros, R. Valentí, Phys. Rev. B 48, 418 (1993)

    Article  ADS  Google Scholar 

  48. C. Dahnken, E. Arrigoni, W. Hanke, J. Low Temp. Phys. 126, 949 (2002)

    Article  ADS  Google Scholar 

  49. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  50. Strongly Correlated Systems: Theoretical Methods, edited by A. Avella, F. Mancini, Springer Series in Solid-State Sciences (Springer, Berlin, Heidelberg, 2012), Vol. 171

  51. S. Nishimoto, E. Jeckelmann, D.J. Scalapino, Phys. Rev. B 79, 205115 (2009)

    Article  ADS  Google Scholar 

  52. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    Article  ADS  Google Scholar 

  53. A.K. McMahan, R.M. Martin, S. Satpathy, Phys. Rev. B 38, 6650 (1988)

    Article  ADS  Google Scholar 

  54. M.S. Hybertsen, M. Schlüter, N.E. Christensen, Phys. Rev. B 39, 9028 (1989)

    Article  ADS  Google Scholar 

  55. H. Eskes, G. Sawatzky, L. Feiner, Physica C 160, 424 (1989)

    Article  ADS  Google Scholar 

  56. H. Eskes, L. Tjeng, G. Sawatzky, Phys. Rev. B 41, 288 (1990)

    Article  ADS  Google Scholar 

  57. F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)

    Article  ADS  Google Scholar 

  58. F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003)

    Article  ADS  Google Scholar 

  59. A. Avella, F. Mancini, The Composite Operator Method (COM), in [50], p. 103.

  60. A. Avella et al., Physica C 282, 1757 (1997)

    Article  ADS  Google Scholar 

  61. A. Avella et al., Int. J. Mod. Phys. B 12, 81 (1998)

    Article  ADS  Google Scholar 

  62. A. Avella et al., Phys. Rev. B 63, 245117 (2001)

    Article  ADS  Google Scholar 

  63. A. Avella et al., Eur. Phys. J. B 29, 399 (2002)

    Article  ADS  Google Scholar 

  64. A. Avella et al., Phys. Rev. B 67, 115123 (2003)

    Article  ADS  Google Scholar 

  65. A. Avella et al., Eur. Phys. J. B 36, 445 (2003)

    Article  ADS  Google Scholar 

  66. A. Avella et al., Physica C 470, S930 (2010)

    Article  ADS  Google Scholar 

  67. A. Avella et al., J. Phys. Chem. Solids 72, 362 (2011)

    Article  ADS  Google Scholar 

  68. A. Avella, S. Krivenko, F. Mancini, N. Plakida, J. Magn. Magn. Mater. 272, 456 (2004)

    Article  ADS  Google Scholar 

  69. S. Krivenko, A. Avella, F. Mancini, N. Plakida, Physica B 359, 666 (2005)

    Article  ADS  Google Scholar 

  70. S. Odashima, A. Avella, F. Mancini, Phys. Rev. B 72, 205121 (2005)

    Article  ADS  Google Scholar 

  71. A. Avella, F. Mancini, G. Sica, J. Phys.: Conf. Ser. 391, 012151 (2012)

    Article  ADS  Google Scholar 

  72. V. Fiorentino, F. Mancini, E. Zasinas, A.F. Barabanov, Phys. Rev. B 64, 214515 (2001)

    Article  ADS  Google Scholar 

  73. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys. Chem. Solids 72, 384 (2011)

    Article  ADS  Google Scholar 

  74. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys.: Conf. Series 273, 012091 (2011)

    Article  ADS  Google Scholar 

  75. A. Avella, F. Mancini, F.P. Mancini, E. Plekhanov, J. Phys.: Conf. Series 391, 012121 (2012)

    Article  ADS  Google Scholar 

  76. A. Avella, S. Feng, F. Mancini, Physica B 312, 537 (2002)

    Article  ADS  Google Scholar 

  77. A. Avella et al., Phys. Lett. A 240, 235 (1998)

    Article  ADS  Google Scholar 

  78. A. Avella et al., Eur. Phys. J. B 20, 303 (2001)

    Article  ADS  Google Scholar 

  79. A. Avella et al., Physica C 408, 284 (2004)

    Article  ADS  Google Scholar 

  80. A. Avella, F. Mancini, Eur. Phys. J. B 41, 149 (2004)

    Article  ADS  Google Scholar 

  81. A. Avella, F. Mancini, J. Phys. Chem. Solids 67, 142 (2006)

    Article  ADS  Google Scholar 

  82. D. Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett. 85, 804 (2000)

    Article  ADS  Google Scholar 

  83. A. Avella, F. Mancini, R. Hayn, Eur. Phys. J. B 37, 465 (2004)

    Article  ADS  Google Scholar 

  84. A. Avella, F. Mancini, R. Hayn, Acta Phys. Pol. B 34, 1345 (2003)

    ADS  Google Scholar 

  85. A. Avella et al., Physica C 460, 1068 (2007)

    Article  ADS  Google Scholar 

  86. A. Avella et al., Acta Phys. Pol. A 113, 417 (2008)

    Google Scholar 

  87. E. Plekhanov, A. Avella, F. Mancini, F.P. Mancini, J. Phys.: Conf. Ser. 273, 012147 (2011)

    Article  ADS  Google Scholar 

  88. A. Avella, F. Mancini, Eur. Phys. J. B 50, 527 (2006)

    Article  ADS  Google Scholar 

  89. A. Avella, F. Mancini, Physica B 378-80, 311 (2006)

    Article  ADS  Google Scholar 

  90. M. Bak, A. Avella, F. Mancini, Phys. Status Solidi B 236, 396 (2003)

    Article  ADS  Google Scholar 

  91. E. Plekhanov, A. Avella, F. Mancini, Phys. Rev. B 74, 115120 (2006)

    Article  ADS  Google Scholar 

  92. E. Plekhanov, A. Avella, F. Mancini, Physica B 403, 1282 (2008)

    Article  ADS  Google Scholar 

  93. E. Plekhanov, A. Avella, F. Mancini, J. Phys.: Conf. Ser. 145, 012063 (2009)

    Article  ADS  Google Scholar 

  94. E. Plekhanov, A. Avella, F. Mancini, Eur. Phys. J. B 77, 381 (2010)

    Article  ADS  Google Scholar 

  95. A. Avella, F. Mancini, E. Plekhanov, Eur. Phys. J. B 66, 295 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. A. Avella, F. Mancini, Physica B 378-80, 700 (2006)

    Article  ADS  Google Scholar 

  97. A. Avella et al., Solid State Commun. 108, 723 (1998)

    Article  ADS  Google Scholar 

  98. A. Avella et al., Eur. Phys. J. B 32, 27 (2003)

    Article  ADS  Google Scholar 

  99. A. Avella, F. Mancini, Phys. Rev. B 75, 134518 (2007)

    Article  ADS  Google Scholar 

  100. A. Avella, F. Mancini, J. Phys.: Condens. Matter 19, 255209 (2007)

    Article  ADS  Google Scholar 

  101. A. Avella, F. Mancini, Acta Phys. Pol. A 113, 395 (2008)

    Google Scholar 

  102. A. Avella, F. Mancini, J. Phys.: Condens. Matter 21, 254209 (2009)

    Article  ADS  Google Scholar 

  103. M. Tachiki, H. Matsumoto, Prog. Theor. Phys. Suppl. 101, 353 (1990)

    Article  ADS  Google Scholar 

  104. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)

  105. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  106. F. Mancini, Europhys. Lett. 50, 229 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Avella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avella, A., Mancini, F., Mancini, F. et al. Emery vs. Hubbard model for cuprate superconductors: a composite operator method study. Eur. Phys. J. B 86, 265 (2013). https://doi.org/10.1140/epjb/e2013-40115-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40115-3

Keywords

Navigation