Skip to main content
Log in

Quantitative molecular orbital energies within a G0W0 approximation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using many-body perturbation theory within a G 0 W 0 approximation, with a plane wave basis set and using a starting point based on density functional theory within the generalized gradient approximation, we explore routes for computing the ionization potential (IP), electron affinity (EA), and fundamental gap of three gas-phase molecules — benzene, thiophene, and (1,4) diamino-benzene — and compare with experiments. We examine the dependence of the IP and fundamental gap on the number of unoccupied states used to represent the dielectric function and the self energy, as well as the dielectric function plane-wave cutoff. We find that with an effective completion strategy for approximating the unoccupied subspace, and a well converged dielectric function kinetic energy cutoff, the computed IPs and EAs are in excellent quantitative agreement with available experiment (within 0.2 eV), indicating that a one-shot G 0 W 0 approach can be very accurate for calculating addition/removal energies of small organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. Heeger, C. Brabec, Adv. Mater. 18, 789 (2006)

    Article  Google Scholar 

  2. M.T. Lloyd, J.E. Anthony, G.G. Malliaras, Mater. Today 10, 34 (2007)

    Article  Google Scholar 

  3. B. Kippelen, J.L. Bredas, Energy Environ. Sci. 2, 251 (2009)

    Article  Google Scholar 

  4. A.J. Bard, Science 207, 139 (1980)

    Article  ADS  Google Scholar 

  5. Z.V. Vardeny, A.J. Heeger, A. Dodabalapur, Synt. Met. 148, 1 (2005)

    Article  Google Scholar 

  6. T. Körzdörfer, S. Kümmel, N. Marom, L. Kronik, Phys. Rev. B 79, 201205 (2009)

    Article  ADS  Google Scholar 

  7. T. Körzdörfer, S. Kümmel, N. Marom, L. Kronik, Phys. Rev. B 82, 129903 (2010)

    Article  ADS  Google Scholar 

  8. S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008)

    Article  ADS  Google Scholar 

  9. S. Sharifzadeh, A. Biller, L. Kronik, J.B. Neaton, Phys. Rev. B 85, 125307 (2012)

    Article  ADS  Google Scholar 

  10. I. Tamblyn, P. Darancet, S.Y. Quek, S.A. Bonev, J.B. Neaton, Phys. Rev. B 84, 201402 (2011)

    Article  ADS  Google Scholar 

  11. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  12. C. Faber, C. Attaccalite, V. Olevano, E. Runge, X. Blase, Phys. Rev. B 83, 115123 (2011)

    Article  ADS  Google Scholar 

  13. X. Blase, C. Attaccalite, V. Olevano, Phys. Rev. B 83, 115103 (2011)

    Article  ADS  Google Scholar 

  14. X. Blase, C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011)

    Article  ADS  Google Scholar 

  15. C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Phys. Rev. B 81, 085103 (2010)

    Article  ADS  Google Scholar 

  16. X. Qian, P. Umari, N. Marzari, Phys. Rev. B 84, 075103 (2011)

    Article  ADS  Google Scholar 

  17. G. Samsonidze, M. Jain, J. Deslippe, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 107, 186404 (2011)

    Article  ADS  Google Scholar 

  18. P. Umari, G. Stenuit, S. Baroni, Phys. Rev. B 79, 201104 (2009)

    Article  ADS  Google Scholar 

  19. P. Umari, G. Stenuit, S. Baroni, Phys. Rev. B 81, 115104 (2010)

    Article  ADS  Google Scholar 

  20. M. Strange, C. Rostgaard, H. Häkkinen, K.S. Thygesen, Phys. Rev. B 83, 115108 (2011)

    Article  ADS  Google Scholar 

  21. X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, M. Scheffler, New J. Phys. 14, 053020 (2012)

    Article  ADS  Google Scholar 

  22. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  23. P. García-Gonzalez, R.W. Godby, Phys. Rev. Lett. 88, 056406 (2002)

    Article  ADS  Google Scholar 

  24. P. García-Gonzlez, R.W. Godby, Phys. Rev. B 63, 075112 (2001)

    Article  ADS  Google Scholar 

  25. W.G. Aulbur, L. Jönsson, J.W. Wilkins, in Solid State Physics, edited by H. Ehrenreich, F. Spaepen (Academic Press, 1999), Vol. 54, pp. 1–218

  26. L. Kronik, R. Fromherz, E. Ko, G. Gantefor, J.R. Chelikowsky, Eur. Phys. J. D 24, 33 (2003)

    Article  ADS  Google Scholar 

  27. S.G. Lias, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. Linstrom, W. Mallartd (National Institute of Standards and Technology, Gaithersburg, MD, 2012), http://webbook.nist.gov

  28. D.E. Cabelli, A.H. Cowley, M.J.S. Dewar, J. Am. Chem. Soc. 103, 3286 (1981)

    Article  Google Scholar 

  29. D. Streets, W. Elane Hall, G.P. Ceasar, Chem. Phys. Lett. 17, 90 (1972)

    Article  ADS  Google Scholar 

  30. P.D. Burrow, J.A. Michejda, K.D. Jordan, J. Chem. Phys. 86, 9 (1987)

    Article  ADS  Google Scholar 

  31. J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, Comput. Phys. Commun. 183, 1269 (2012)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 35, 5585 (1987)

    Article  ADS  Google Scholar 

  34. P.E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, V. Olevano, Phys. Rev. Lett. 101, 226405 (2008)

    Article  ADS  Google Scholar 

  35. B. Shih, Y. Xue, P. Zhang, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 105, 146401 (2010)

    Article  ADS  Google Scholar 

  36. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  37. F. Bruneval, X. Gonze, Phys. Rev. B 78, 085125 (2008)

    Article  ADS  Google Scholar 

  38. J. Deslippe, M. Jain, G. Samsonidze, M.L. Cohen, S.G. Louie, to be submitted (2012)

  39. W. Kang, M.S. Hybertsen, Phys. Rev. B 82, 195108 (2010)

    Article  ADS  Google Scholar 

  40. F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 81, 115105 (2010)

    Article  ADS  Google Scholar 

  41. J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103 (2010)

    Article  ADS  Google Scholar 

  42. L. Reining, G. Onida, R.W. Godby, Phys. Rev. B 56, R4301 (1997)

    Article  ADS  Google Scholar 

  43. W. Kang, M.S. Hybertsen, Phys. Rev. B 82, 085203 (2010)

    Article  ADS  Google Scholar 

  44. E. Van Veen, Chem. Phys. Lett. 41, 535 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Neaton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifzadeh, S., Tamblyn, I., Doak, P. et al. Quantitative molecular orbital energies within a G0W0 approximation. Eur. Phys. J. B 85, 323 (2012). https://doi.org/10.1140/epjb/e2012-30206-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30206-0

Keywords

Navigation