Effects on generalized growth models driven by a non-Poissonian dichotomic noise

Regular Article Interdisciplinary Physics

DOI: 10.1140/epjb/e2011-20493-2

Cite this article as:
Bologna, M. & Calisto, H. Eur. Phys. J. B (2011) 83: 409. doi:10.1140/epjb/e2011-20493-2

Abstract

In this paper we consider a general growth model with stochastic growth rate modelled via a symmetric non-poissonian dichotomic noise. We find an exact analytical solution for its probability distribution. We consider the, as yet, unexplored case where the deterministic growth rate is perturbed by a dichotomic noise characterized by a waiting time distribution in the two state that is a power law with power 1 <μ< 2. We apply the results to two well-known growth models; Malthus-Verhulst and Gompertz.

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Instituto de Alta Investigación IAIUniversidad de TarapacáAricaChile
  2. 2.Departamento de Física Facultad de CienciasUniversidad de TarapacáAricaChile