Skip to main content
Log in

Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential

  • Mesoscopic and Nanoscale Systems
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work are studied the intense laser effects on the impurity states in GaAs-Ga1− x Al x As quantum wells under applied electric and magnetic fields. The electric field is taken oriented along the growth direction of the quantum well whereas the magnetic field is considered to be in-plane. The calculations are made within the effective mass and parabolic band approximations. The intense laser effects have been included through the Floquet method by modifying the confinement potential associated to the heterostructure. The results are presented for several configurations of the dimensions of the quantum well, the position of the impurity atom, the applied electric and magnetic fields, and the incident intense laser radiation. The results suggest that for fixed geometry setups in the system, the binding energy is a decreasing function of the electric field intensity while a dual monotonic behavior is detected when it varies with the magnitude of an applied magnetic field, according to the intensity of the laser field radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices (Springer-Verlag, New York, 2004)

  2. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, London, 1991)

  3. S.D. Ganichev, W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2006)

  4. A.P. Jauho, K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)

    Article  ADS  Google Scholar 

  5. W. Xu, Europhys. Lett. 40, 411 (1997)

    Article  ADS  Google Scholar 

  6. B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, Q. Fanyao, E.F. Da Silva Jr., V.N. Freire, Phys. Rev. B 70, 035307 (2004)

    Article  ADS  Google Scholar 

  7. R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, V. Umansky, Nature 420, 646 (2002)

    Article  ADS  Google Scholar 

  8. N.G. Asmar, A.G. Markelz, E.G. Gwinn, J. Cerne, M.S. Sherwin, K.L. Campman, P.F. Hopkins, A.C. Gossard, Phys. Rev. B 51, 18041 (1995)

    Article  ADS  Google Scholar 

  9. H. Hsu, L.E. Reichl, Phys. Rev. B 74, 115406 (2006)

    Article  ADS  Google Scholar 

  10. L.C.M. Miranda, J. Phys. C: Solid State Phys. 9, 2971 (1976)

    Article  ADS  Google Scholar 

  11. O.A.C. Nunes, Solid State Commun. 45, 53 (1983)

    Article  ADS  Google Scholar 

  12. R.M.O. Galvao, L.C.M. Miranda, Phys. Rev. B 28, 3593 (1983)

    Article  ADS  Google Scholar 

  13. J.W. Sakai, O.A.C. Nunes, Solid State Commun. 64, 1393 (1987)

    Article  ADS  Google Scholar 

  14. H.S. Brandi, A. Latgé, L.E. Oliveira, Phys. Stat. Sol. (b) 210, 671 (1998)

    Article  ADS  Google Scholar 

  15. H.S. Brandi, A. Latgé, L.E. Oliveira, Phys. Rev. B 70, 153303 (2004)

    Article  ADS  Google Scholar 

  16. E.C. Niculescu, L.M. Burileanu, J. Optoelectron Adv. Mater. 9, 2713 (2007)

    Google Scholar 

  17. F.E. López, E. Reyes-Gómez, H.S. Brandi, N. Porras-Montenegro, L.E. Oliveira, J. Phys. D Appl. Phys. 42, 115304 (2009)

    Article  ADS  Google Scholar 

  18. E. Kasapoglu, I. Sökmen, Physica B 403, 3746 (2008)

    Article  ADS  Google Scholar 

  19. O.O.D. Neto, F. Qu, Superlatt. Microstruct. 35, 1 (2004)

    Article  ADS  Google Scholar 

  20. F. Ungan, U. Yesilgul, S.Şakiroglu, E. Kasapoglu, H. Sari, I. Sökmen, Phys. Lett. A 374, 2980 (2010)

    Article  ADS  Google Scholar 

  21. E.C. Niculescu, L.M. Burileanu, A. Radu, Superlatt. Microstruct. 44, 173 (2008)

    Article  ADS  Google Scholar 

  22. E.C. Niculescu, A. Radu, M. Stafe, Superlatt. Microstruct. 46, 443 (2009)

    Article  ADS  Google Scholar 

  23. A.J. Peter, Phys. Lett. A 374, 2170 (2010)

    Article  ADS  Google Scholar 

  24. E. Kasapoglu, H. Sari, U. Yesilgul, I Sökmen, J. Phys.: Condens. Matter 18, 6263 (2006)

    Article  ADS  Google Scholar 

  25. M. Santhi, A.J. Peter, Eur. Phys. J. B 71, 225 (2009)

    Article  ADS  Google Scholar 

  26. C.A. Duque, E. Kasapoglu, S.Şakiroglu, H. Sari, I. Sökmen, Appl. Surface Sci. 256, 7406 (2010)

    Article  ADS  Google Scholar 

  27. N. Eseanu, Phys. Lett. A 374, 1278 (2010)

    Article  ADS  Google Scholar 

  28. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva Jr., J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  29. L.P. Gorkov, I.E. Dzyaloshinskii, Sov. Phys. J. Exp. Theor. Phys. 26, 449 (1968)

    ADS  Google Scholar 

  30. K. Chang, F.M. Peeters, Phys. Rev. B 63, 153307 (2001)

    Article  ADS  Google Scholar 

  31. Yu. E. Lozovik, I.V. Ovchinnikov, S. Yu. Volkov, L.V. Butov, D.S. Chemla, Phys. Rev. B 65, 235304 (2002)

    Article  ADS  Google Scholar 

  32. A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, W.Y. Jan, Phys. Rev. B 44, 6231 (1991)

    Article  ADS  Google Scholar 

  33. I. Galbraith, G. Duggan, Phys. Rev. B 40, 5515 (1989)

    Article  ADS  Google Scholar 

  34. J.-B. Xia, W.-J. Fan, Phys. Rev. B 40, 8508 (1989)

    Article  ADS  Google Scholar 

  35. M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  36. M. Pont, N.R. Walet, M. Gavrila, C.W. McCurdy, Phys. Rev. Lett. 61, 939 (1988)

    Article  ADS  Google Scholar 

  37. H. Sari, E. Kasapoglu, I. Sökmen, Phys. Lett. A 311, 60 (2003)

    Article  ADS  Google Scholar 

  38. E. Kasapoglu, H. Sari, M. Güneş, I. Sökmen, Surface Rev. Lett. 11, 403 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Duque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E. et al. Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential. Eur. Phys. J. B 81, 441–449 (2011). https://doi.org/10.1140/epjb/e2011-20265-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20265-0

Keywords

Navigation