The European Physical Journal B

, Volume 74, Issue 4, pp 457–461

Soft X-ray resonant scattering study of single-crystal LaSr2Mn2O7

Authors

    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
    • Ames Laboratory and Department of Physics and Astronomy, Iowa State University
  • Y. Su
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
  • Tapan Chatterji
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
    • Institut Laue-Langevin
  • A. Nefedov
    • Institut für Experimentalphysik/Festkörperphysik, Ruhr-Universität Bochum
  • J. Persson
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
  • P. Meuffels
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
  • Y. Xiao
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
  • D. Vaknin
    • Ames Laboratory and Department of Physics and Astronomy, Iowa State University
  • Th. Brückel
    • Forschungszentrum Jülich GmbHInstitut für Festkörperforschung
Solid State and Materials

DOI: 10.1140/epjb/e2010-00117-3

Cite this article as:
Li, H., Su, Y., Chatterji, T. et al. Eur. Phys. J. B (2010) 74: 457. doi:10.1140/epjb/e2010-00117-3

Abstract

Soft X-ray resonant scattering studies at the Mn LII, III- and the La MIV, V- edges of single-crystal LaSr2Mn2O7 are reported. At low temperatures, below TN ≈ 160 K, energy scans with a fixed momentum transfer at the A-type antiferromagnetic (0 0 1) reflection around the Mn LII, III-edges with incident linear σ and π polarizations show strong resonant enhancements. The splitting of the energy spectra around the Mn LII, III-edges may indicate the presence of a mixed valence state, e.g., Mn3+/Mn4+. The relative intensities of the resonance and the clear shoulder-feature as well as the strong incident σ and π polarization dependences strongly indicate its complex electronic origin. Unexpected enhancement of the charge Bragg (0 0 2) reflection at the La MIV, V-edges with σ polarization has been observed up to 300 K, with an anomaly appearing around the orbital-ordering transition temperature, TOO ≈ 220 K, suggesting a strong coupling (competition) between them.

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010