Skip to main content
Log in

Variable-range hopping in 2D quasi-1D electronic systems

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼exp [-(TL/T)γL], and current in the non-linear (NL), i.e. \(j({\mathcal E}) \sim \exp[-({\mathcal E}_{NL} / \mathcal{E})^{\gamma_{NL}}]\), response regimes (\({\mathcal E}\) is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of TL and \({\mathcal E}_{NL}\) and the values of γL and γNL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • N.F. Mott, W.D. Towse, Adv. Phys. 10, 107 (1961)

    Article  ADS  Google Scholar 

  • V.L. Berezinskii, Sov. Phys. JETP 38, 620 (1974)

    Google Scholar 

  • A.A. Gogolin, V.I. Mel'nikov, E.I. Rashba, Sov. Phys. JETP 42, 168 (1976)

    Google Scholar 

  • T. Giamarchi, H.J. Schulz, Phys. Rev. B 37, 325 (1988)

    Article  ADS  Google Scholar 

  • C.L. Kane, M.P.A. Fisher, Phys. Rev. B 46, 15233 (1992)

    Article  ADS  Google Scholar 

  • I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 046404 (2005)

    Article  ADS  Google Scholar 

  • D.M. Basko, I.L. Aleiner, B.L. Altshuler; e-print arXiv:cond-mat/0506617

  • N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

  • B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984)

  • The dimension 1 is special, see reference FTS for details

  • T. Giamarchi, Quantum Physics in One Dimension (Oxford Science Publications, 2004)

  • A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization Approach to Strongly Correlated Systems (Cambridge, 1999)

  • In a pure 2D system, there is only quasi-long-range order. We will however still use the terminology: CDW throughout the manuscript. As the system is strongly disordered there is no long-range order at all anyway (and it would be the same in the equivalent 3D geometry)

  • M.M. Fogler, S. Teber, B.I. Shklovskii, Phys. Rev. B 69, 035413 (2004)

    Article  ADS  Google Scholar 

  • F.J. Himpsel et al., J. Phys.: Condens. Matter 13, 11097 (2001)

    Article  Google Scholar 

  • G. Grüner, Density Waves in Solids (Addison-Wesley, New York, 1994); G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  • Semiconductors and Semimetals 27: Highly Conducting Quasi-One-Dimensional Organic Crystals , edited by E. Conwell (Academic Press, San Diego, 1988)

  • ECRYS-2005: International Workshop on Electronic Crystals, edited by S. Brazovskii, N. Kirova, P. Monceau, J. Phys. IV France, 131 (EDP Sciences, 2005)

  • It should be noticed that going beyond the Mott or ES arguments or proving from microscopics the VRH laws are still open and challenging problems. However, progress has been made towards deriving the Coulomb gap shape, see reference MI.

  • M. Müller, L.B. Ioffe, Phys. Rev. Lett. 93, 256403 (2004)

    Article  ADS  Google Scholar 

  • For quasi-1D systems the parameter of the VRH law reads: T0 = 1/νξx ξy, where ξx ∝vF τel is the longitudinal, i.e. parallel to the chains, localization length and ξy is the transverse localization length. Assuming ξy ≤b, where b is the inter-chain distance and with ν∝1/vF b, one has: T0 ∝1 / τel, up to a numerical factor

  • J. Joo, S.M. Long, J.P. Pouget, E.J. Oh, A.G. MacDiarmid, A.J. Epstein, Phys. Rev. B 57, 9567 (1998)

    Article  ADS  Google Scholar 

  • A.N. Aleshin, S.R. Williams, A.J. Heeger, Synth. Met. 94, 173 (1997)

    Article  Google Scholar 

  • B. Zawilski, T. Klein, J. Marcus, Solid State Commun. 124, 39 (2002)

    Article  Google Scholar 

  • G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  • S. Brazovskii, T. Nattermann, Advances in Physics 53, 177 (2004)

    Article  ADS  Google Scholar 

  • This follows from the fact that in quasi-1D systems, charges are constrained to move along lines, with a small hopping amplitude from one line to the other. For the Wigner crystal, where displacements are two-dimensional, the basic defect is the vacancy or the interstitial, with a length of the order of the distance between electrons

  • S. Brazovskii, N. Kirova, in Soviet Scientific Reviews, Sec. A, Physics Reviews, Vol. 6, edited by I.M. Khalatnikov (Harwood, New York, 1984)

  • Yu Lu, Solitons and Polarons in Conducting Polymers (World Scientific, 1988)

  • The f-scattering term is generally removed by a shift of the ϕ-field. One then works on the background of a deformed system. Here, we are interested in such deformations and we therefore consider explicitly the f-scattering term.

  • M.J. Rice, J. Bernasconi, Phys. Rev. Lett. 29, 113 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  • S.A. Brazovskii, S.I. Matveenko, Sov. Phys. JETP 72, 492 (1991)

    Google Scholar 

  • V.L. Nguen, Sov. Phys. Semicond. 18, 934 (1984)

    Google Scholar 

  • A.I. Larkin, P.A. Lee, Phys. Rev. B 17, 1596 (1978)

    Article  ADS  Google Scholar 

  • M. Fabrizio, A.O. Gogolin, S. Scheidl, Phys. Rev. Lett. 72, 2235 (1994)

    Article  ADS  Google Scholar 

  • S.I. Matveenko, S.A. Brazovskii, Phys. Rev. B 65, 245108 (2002)

    Article  ADS  Google Scholar 

  • B.I. Shklovskii, Sov. Phys. JETP 34, 108 (1972)

    Google Scholar 

  • S.V. Malinin, T. Nattermann, B. Rosenow, Phys. Rev. B 70, 235120 (2004)

    Article  ADS  Google Scholar 

  • L.V. Keldysh, JETP Lett. 29, 658 (1979)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Teber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teber, S. Variable-range hopping in 2D quasi-1D electronic systems. Eur. Phys. J. B 49, 289–304 (2006). https://doi.org/10.1140/epjb/e2006-00078-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00078-0

PACS.

Navigation