Skip to main content
Log in

Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (\(\sqrt{s_{NN}}=\) 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( \(\mu_B > 500\) MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Fukushima, T. Hatsuda, Rep. Prog. Phys. 74, 014001 (2011)

    Article  ADS  Google Scholar 

  2. F. Becattini et al., Phys. Rev. Lett. 111, 082302 (2013)

    Article  ADS  Google Scholar 

  3. J. Stachel et al., J. Phys.: Conf. Ser. 509, 012019 (2014)

    Google Scholar 

  4. S. Borsanyi et al., JHEP 09, 073 (2010)

    Article  ADS  Google Scholar 

  5. A. Bazavov et al., Phys. Rev. D 85, 054503 (2012)

    Article  ADS  Google Scholar 

  6. Y. Aoki et al., Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  7. K. Kashiwa et al., Phys. Lett. B 662, 26 (2008)

    Article  ADS  Google Scholar 

  8. C.S. Fischer, J. Luecker, C.A. Welzbacher, Phys. Rev. D 90, 034022 (2014)

    Article  ADS  Google Scholar 

  9. A.N. Tawfik, A.M. Diab, Phys. Rev. C 91, 015204 (2015)

    Article  ADS  Google Scholar 

  10. M. Orsaria et al., Phys. Rev. C 89, 015806 (2014)

    Article  ADS  Google Scholar 

  11. L. McLerran, R.D. Pisarski, Nucl. Phys. A 796, 83 (2007)

    Article  ADS  Google Scholar 

  12. L. McLerran, K. Redlich, C. Sasaki, Nucl. Phys. A 824, 86 (2009)

    Article  ADS  Google Scholar 

  13. M. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999)

    Article  ADS  Google Scholar 

  14. H. Lee et al., Nucl. Phys. A 723, 427 (2003)

    Article  ADS  Google Scholar 

  15. I.C. Arsene et al., Phys. Rev. C 75, 034902 (2007)

    Article  ADS  Google Scholar 

  16. B. Friman (Editors), The CBM Physics Book, Lect. Notes Phys. Vol. 814 (Springer, 2011)

  17. V.D. Toneev et al., Eur. Phys. J. C 32, 399 (2003)

    Article  ADS  Google Scholar 

  18. A. Laszlo, PoS CPOD07, 054 (2007)

    Google Scholar 

  19. https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

  20. A. Sorin, PoS CPOD2014, 042 (2014)

  21. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. 41, 243 (2009)

    Article  Google Scholar 

  22. C. Montag, PoS CPOD2014, 041 (2014)

  23. J. Michel et al., IEEE Trans. Nucl. Sci. 58, 1745 (2011)

    Article  ADS  Google Scholar 

  24. G. Odyniec, PoS CPOD2013, 043 (2013)

  25. H. Sako, JPS Conf. Ser. 8, 022010 (2015) (for the J-PARC heavy-ion Collaboration)

    Google Scholar 

  26. A. Dainese et al., Frascati Phys. Ser. 62, 55 (2016)

    Google Scholar 

  27. The CBM Collaboration, Technical Design Report for the CBM Superconducting Dipole Magnet, GSI-2015-02000 (2013)

  28. The CBM Collaboration, Technical Design Report for the CBM Silicon Tracking System, GSI-2013-05499 (2013)

  29. The CBM Collaboration, Technical Design Report for the CBM Time-of-Flight System, GSI-2015-01999 (2014)

  30. The CBM Collaboration, Technical Design Report for the CBM Ring Imaging Cherenkov Detector, GSI-2014-00528 (2013)

  31. The CBM Collaboration, Technical Design Report for the CBM Muon Chambers, GSI-2015-02580 (2015)

  32. The CBM Collaboration, Technical Design Report for the CBM Projectile Spectator Detector, GSI-2015-02020 (2015)

  33. N. Herrmann, J. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)

    Article  ADS  Google Scholar 

  34. H. Oeschler, H.-G. Ritter, N. Xu, Hadron Production in Heavy Ion Collisions, in Relativistic Heavy Ion Physics, edited by R. Stock (Springer, Materials, 2010)

  35. C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)

    Article  ADS  Google Scholar 

  36. P. Danielewicz et al., Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  37. P. Chung et al., Phys. Rev. Lett. 85, 940 (2000)

    Article  ADS  Google Scholar 

  38. Y. Shin et al., Phys. Rev. Lett. 81, 1576 (1998)

    Article  ADS  Google Scholar 

  39. V. Zinyuk et al., Phys. Rev. C 90, 025210 (2014)

    Article  ADS  Google Scholar 

  40. L. Adamczyk and the STAR Collaboration, Phys. Rev. Lett. 112, 162301 (2014)

    Article  ADS  Google Scholar 

  41. J. Steinheimer et al., Phys. Rev. C 89, 054913 (2014)

    Article  ADS  Google Scholar 

  42. J. Xu et al., Phys. Rev. Lett. 112, 012301 (2014)

    Article  ADS  Google Scholar 

  43. Y. Hatta, A. Monnai, B.W. Xiao, Nucl. Phys. A 947, 155 (2016)

    Article  ADS  Google Scholar 

  44. C. Alt et al., Phys. Rev. C 79, 044910 (2009)

    Article  ADS  Google Scholar 

  45. NA49 Collaboration (T. Anticic et al.), Phys. Rev. C 92, 044905 (2015)

    Article  ADS  Google Scholar 

  46. NA49 Collaboration (T. Anticic et al.), Eur. Phys. J. C 75, 587 (2015)

    Article  Google Scholar 

  47. PHENIX Collaboration (J. Mitchell et al.), PoS CPOD2014, 075 (2015)

    Google Scholar 

  48. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 011901(R) (2016)

    Article  ADS  Google Scholar 

  49. L. Adamczyk et al., Phys. Rev. C 93, 014907 (2016)

    Article  ADS  Google Scholar 

  50. STAR Collaboration (X. Luo), PoS CPOD2014, 019 (2014)

    Google Scholar 

  51. STAR Collaboration (J. Thäder), Nucl. Phys. A 956, 320 (2016)

    Article  Google Scholar 

  52. F. Karsch, K. Redlich, Phys. Lett. B 695, 136 (2011)

    Article  ADS  Google Scholar 

  53. V. Skokov, B. Friman, K. Redlich, Phys. Rev. C 88, 034911 (2013)

    Article  ADS  Google Scholar 

  54. P. Garg et al., Phys. Lett. B 726, 691 (2013)

    Article  ADS  Google Scholar 

  55. X.F. Luo et al., J. Phys. G 37, 094061 (2010)

    Article  ADS  Google Scholar 

  56. M. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

    Article  ADS  Google Scholar 

  57. J.W. Chen, J. Deng, L. Labun, Phys. Rev. D 92, 054019 (2015)

    Article  ADS  Google Scholar 

  58. A. Bzdak, V. Koch, V. Sokokov, arXiv:1612.05128 [nucl-th]

  59. P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142, 167 (1986)

    Article  ADS  Google Scholar 

  60. M. Gazdzicki, M. Gorenstein, Act. Phys. Pol. B 30, 2705 (1999)

    Google Scholar 

  61. B. Tomasik, E.E. Kolomeitsev, Eur. Phys. J. A 52, 251 (2016)

    Article  ADS  Google Scholar 

  62. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 834, 237c (2010)

    Article  ADS  Google Scholar 

  63. P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004)

    Article  ADS  Google Scholar 

  64. A. Andronic, P. Braun-Munzinger, J. Stachel, Acta Phys. Pol. B 40, 1005 (2009)

    ADS  Google Scholar 

  65. P. Chung et al., Phys. Rev. Lett. 91, 202301 (2003)

    Article  ADS  Google Scholar 

  66. HADES Collaboration (G. Agakishiev), arXiv:1512.07070

  67. P.B. Demorest et al., Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  68. L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)

    Article  ADS  Google Scholar 

  69. H.A. Weldon, Phys. Rev. D 42, 2384 (1990)

    Article  ADS  Google Scholar 

  70. C. Gale, J.I. Kapusta, Nucl. Phys. B 357, 65 (1991)

    Article  ADS  Google Scholar 

  71. P. Hohler, R. Rapp, Phys. Lett. B 731, 103 (2014)

    Article  ADS  Google Scholar 

  72. R. Rapp, H. van Hees, Phys. Lett. B 753, 586 (2016)

    Article  ADS  Google Scholar 

  73. R. Chatterjee et al., Phys. Rev. C 75, 054909 (2007)

    Article  ADS  Google Scholar 

  74. J. Deng et al., Phys. Lett. B 701, 581 (2011)

    Article  ADS  Google Scholar 

  75. P. Mohanty et al., Phys. Rev. C 85, 031903 (2012)

    Article  ADS  Google Scholar 

  76. C. Gale et al., Phys. Rev. Lett. 114, 072301 (2015)

    Article  ADS  Google Scholar 

  77. R. Rapp, J. Wambach, Eur. Phys. J. A 6, 415 (1999)

    Article  ADS  Google Scholar 

  78. B. Friman, M. Herrmann, W. Norenberg, Nucl. Phys. A 560, 411 (1993)

    Article  ADS  Google Scholar 

  79. G. Chanfray, P. Schuck, Nucl. Phys. A 555, 329 (1993)

    Article  ADS  Google Scholar 

  80. S. Leupold et al., Nucl. Phys. A 632, 109 (1998)

    Article  ADS  Google Scholar 

  81. G. Chanfray, R. Rapp, J. Wambach, Phys. Rev. Lett. 76, 368 (1996)

    Article  ADS  Google Scholar 

  82. E. Oset, D. Cabrera, M.J. Vicente Vacas, Nucl. Phys. A 705, 90 (2002)

    Article  ADS  Google Scholar 

  83. H. Ding, O. Kaczmarek, F. Meyer, Phys. Rev. D 94, 034504 (2016)

    Article  ADS  Google Scholar 

  84. I. Fröhlich et al., PoS ACAT2007, 076 (2007)

    Google Scholar 

  85. P.P. Bhaduri et al., Phys. Rev. C 89, 044912 (2014)

    Article  ADS  Google Scholar 

  86. T. Galatyuk et al., Eur. Phys. J. A 52, 131 (2016)

    Article  ADS  Google Scholar 

  87. M. D’Agostino et al., Nucl. Phys. A 749, 55 (2005)

    Article  ADS  Google Scholar 

  88. H.J. Specht, AIP Conf. Proc. 1322, 1 (2010)

    Article  ADS  Google Scholar 

  89. R. Averbeck, Prog. Part. Nucl. Phys. 70, 159 (2013)

    Article  ADS  Google Scholar 

  90. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  91. NA50 Collaboration (M. Abreu et al.), Phys. Lett. B 410, 337 (1997)

    Article  ADS  Google Scholar 

  92. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 232301 (2007) 98

    Article  Google Scholar 

  93. ALICE Collaboration (B. Abelev et al.), Phys. Rev. Lett. 109, 072301 (2012)

    Article  ADS  Google Scholar 

  94. D. Kharzeev, H. Satz, Phys. Lett. B 356, 365 (1995)

    Article  ADS  Google Scholar 

  95. W. Cassing, E. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A 691, 753 (2001)

    Article  ADS  Google Scholar 

  96. A. Andronic et al., Phys. Lett. B 697, 203 (2011)

    Article  ADS  Google Scholar 

  97. J.K. Ahn et al., Phys. Rev. C 88, 014003 (2013)

    Article  ADS  Google Scholar 

  98. A.S. Botvina et al., Phys. Lett. B 742, 7 (2014)

    Article  ADS  Google Scholar 

  99. H. Stöcker et al., Nucl. Phys. A 827, 624c (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Friese.

Additional information

Communicated by P. Salabura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablyazimov, T., Abuhoza, A., Adak, R.P. et al. Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 53, 60 (2017). https://doi.org/10.1140/epja/i2017-12248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12248-y

Navigation