Skip to main content
Log in

Fermion bag approach to fermion sign problems

New opportunities in lattice fermion field theories

The European Physical Journal A Aims and scope Submit manuscript

Abstract

The fermion bag approach is a new method to tackle fermion sign problems in lattice field theories. Using this approach it is possible to solve a class of sign problems that seem unsolvable by traditional methods. The new solutions emerge when partition functions are written in terms of fermion bags and bosonic worldlines. In these new variables it is possible to identify hidden pairing mechanisms which lead to the solutions. The new solutions allow us for the first time to use Monte Carlo methods to solve a variety of interesting lattice field theories, thus creating new opportunities for understanding strongly correlated fermion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Troyer, U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).

    Article  ADS  Google Scholar 

  2. J. Zaanen, Science 319, 1205 (2008).

    Article  ADS  Google Scholar 

  3. F. Fucito, E. Marinari, G. Parisi, C. Rebbi, Nucl. Phys. B 180, 369 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  4. D.J. Scalapino, R.L. Sugar, Phys. Rev. Lett. 46, 519 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  5. J.E. Hirsch, D.J. Scalapino, R.L. Sugar, R. Blankenbecler, Phys. Rev. Lett. 47, 1628 (1981).

    Article  ADS  Google Scholar 

  6. S. Chandrasekharan, Phys. Rev. D 82, 025007 (2010).

    Article  ADS  Google Scholar 

  7. S. Chandrasekharan, U.-J. Wiese, Phys. Rev. Lett. 83, 3116 (1999).

    Article  ADS  Google Scholar 

  8. A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).

    Article  ADS  Google Scholar 

  9. E. Gull et al., Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  10. S. Chandrasekharan, A. Li, Phys. Rev. Lett. 108, 140404 (2012).

    Article  ADS  Google Scholar 

  11. S. Chandrasekharan, PoS LATTICE2008, 003 (2008).

    Google Scholar 

  12. S. Chandrasekharan, A. Li, Phys. Rev. D 85, 091502 (2012).

    Article  ADS  Google Scholar 

  13. S. Chandrasekharan, Phys. Rev. D 86, 021701 (2012).

    Article  ADS  Google Scholar 

  14. D. Banerjee, S. Chandrasekharan, Phys. Rev. D 81, 125007 (2010).

    Article  ADS  Google Scholar 

  15. U. Wolff, Nucl. Phys. B 824, 254 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. C. Gattringer, T. Kloiber, Nucl. Phys. B 869, 56 (2013).

    Article  ADS  MATH  Google Scholar 

  17. T. Appelquist, J. Terning, L. Wijewardhana, Phys. Rev. Lett. 77, 1214 (1996).

    Article  ADS  Google Scholar 

  18. B. Rosenstein, B. Warr, S. Park, Phys. Rep. 205, 59 (1991).

    Article  ADS  Google Scholar 

  19. J. Giedt, PoS LATTICE2012, 006 (2012).

    Google Scholar 

  20. E.T. Neil, PoS LATTICE2011, 009 (2011).

    Google Scholar 

  21. I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).

    Article  ADS  Google Scholar 

  22. S. Hands, A. Kocić, J.B. Kogut, Ann. Phys. 224, 29 (1993).

    Article  ADS  Google Scholar 

  23. D.T. Son, Phys. Rev. B 75, 235423 (2007).

    Article  ADS  Google Scholar 

  24. J.E. Drut, D.T. Son, Phys. Rev. B 77, 075115 (2008).

    Article  ADS  Google Scholar 

  25. I.F. Herbut, V. Juričić, O. Vafek, Phys. Rev. B 80, 075432 (2009).

    Article  ADS  Google Scholar 

  26. V. Juričić, I.F. Herbut, G.W. Semenoff, Phys. Rev. B 80, 081405 (2009).

    Article  ADS  Google Scholar 

  27. L. Karkkainen, R. Lacaze, P. Lacock, B. Petersson, Nucl. Phys. B 415, 781 (1994).

    Article  ADS  Google Scholar 

  28. S. Hands, S. Kim, J.B. Kogut, Nucl. Phys. B 442, 364 (1995).

    Article  ADS  Google Scholar 

  29. E. Focht, J. Jersák, J. Paul, Phys. Rev. D 53, 4616 (1996).

    Article  ADS  Google Scholar 

  30. L. Del Debbio, S. Hands, Phys. Lett. B 373, 171 (1996).

    Article  ADS  Google Scholar 

  31. L. Del Debbio, S.J. Hands, J.C. Mehegan, Nucl. Phys. B 502, 269 (1997).

    Article  ADS  Google Scholar 

  32. I.M. Barbour, N. Psycharis, E. Focht, W. Franzki, J. Jersák, Phys. Rev. D 58, 074507 (1998).

    Article  ADS  Google Scholar 

  33. S. Christofi, C. Strouthos, JHEP 05, 088 (2007).

    Article  ADS  Google Scholar 

  34. J.E. Drut, T.A. Lähde, Phys. Rev. B 79, 241405 (2009).

    Article  ADS  Google Scholar 

  35. J.E. Drut, T.A. Lähde, Phys. Rev. Lett. 102, 026802 (2009).

    Article  ADS  Google Scholar 

  36. W. Armour, S. Hands, C. Strouthos, Phys. Rev. B 81, 125105 (2010).

    Article  ADS  Google Scholar 

  37. T. Paiva, R.T. Scalettar, W. Zheng, R.R.P. Singh, J. Oitmaa, Phys. Rev. B 72, 085123 (2005).

    Article  ADS  Google Scholar 

  38. Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Nature 464, 847 (2010).

    Article  ADS  Google Scholar 

  39. S. Sorella, Y. Otsuka, S. Yunoki, Sci. Rep. 2, (2012).

  40. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

    Article  ADS  Google Scholar 

  41. D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003).

    Article  ADS  Google Scholar 

  42. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  43. V.Z. Kresin, S.A. Wolf, Rev. Mod. Phys. 81, 481 (2009).

    Article  ADS  Google Scholar 

  44. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).

    Article  ADS  Google Scholar 

  45. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).

    Google Scholar 

  46. P.F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339 (2002).

    Article  ADS  Google Scholar 

  47. E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Rev. Mod. Phys. 81, 1773 (2009).

    Article  ADS  Google Scholar 

  48. D. Lee, B. Borasoy, T. Schäfer, Phys. Rev. C 70, 014007 (2004).

    Article  ADS  Google Scholar 

  49. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meissner, Phys. Rev. Lett. 104, 142501 (2010).

    Article  ADS  Google Scholar 

  50. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000).

    Article  ADS  Google Scholar 

  51. S. Beane, P.F. Bedaque, M. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002).

    Article  ADS  MATH  Google Scholar 

  52. K. Harada, H. Kubo, Y. Yamamoto, Phys. Rev. C 83, 034002 (2011).

    Article  ADS  Google Scholar 

  53. F. de Soto, J.C. Angles d’Auriac, J. Carbonell, Eur. Phys. J. A 47, 57 (2011).

    Article  ADS  Google Scholar 

  54. S. Chandrasekharan, M. Pepe, F. Steffen, U. Wiese, JHEP 12, 035 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Hands et al., Eur. Phys. J. C 17, 285 (2000).

    Article  ADS  MATH  Google Scholar 

  56. C. Wu, S.-C. Zhang, Phys. Rev. Lett. 93, 036403 (2004).

    Article  ADS  Google Scholar 

  57. D. Huertas-Hernando, F. Guinea, A. Brataas, Phys. Rev. B 74, 155426 (2006).

    Article  ADS  Google Scholar 

  58. M.G. Endres, Phys. Rev. Lett. 109, 250403 (2012).

    Article  ADS  Google Scholar 

  59. H. Evertz, Adv. Phys. 52, 1 (2003).

    Article  ADS  Google Scholar 

  60. J. Yoo, S. Chandrasekharan, R.K. Kaul, D. Ullmo, H.U. Baranger, Phys. Rev. B 71, 201309 (2005).

    Article  ADS  Google Scholar 

  61. N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 87, 160601 (2001).

    Article  ADS  Google Scholar 

  62. S. Chandrasekharan, A. Li, PoS LATTICE2011, 058 (2011).

    Google Scholar 

  63. S. Catterall, R. Galvez, J. Hubisz, D. Mehta, A. Veernala, Phys. Rev. D 86, 034502 (2012).

    Article  ADS  Google Scholar 

  64. I.-H. Lee, R.E. Shrock, Phys. Rev. Lett. 59, 14 (1987).

    Article  ADS  Google Scholar 

  65. G. Parisi, Nucl. Phys. B 100, 368 (1975).

    Article  ADS  Google Scholar 

  66. S. Hikami, T. Muta, Prog. Theor. Phys. 57, 785 (1977).

    Article  ADS  Google Scholar 

  67. S. Hands, Phys. Rev. D 51, 5816 (1995).

    Article  ADS  Google Scholar 

  68. M. Gomes, R.S. Mendes, R.F. Ribeiro, A.J. da Silva, Phys. Rev. D 43, 3516 (1991).

    Article  ADS  Google Scholar 

  69. K.-i. Kondo, Nucl. Phys. B 450, 251 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. D.K. Hong, S.H. Park, Phys. Rev. D 49, 5507 (1994).

    Article  ADS  Google Scholar 

  71. M. Sugiura, Prog. Theor. Phys. 97, 311 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  72. L. Janssen, H. Gies, Phys. Rev. D 86, 105007 (2012).

    Article  ADS  Google Scholar 

  73. L. Rosa, P. Vitale, C. Wetterich, Phys. Rev. Lett. 86, 958 (2001).

    Article  ADS  Google Scholar 

  74. A. Li, J. Phys. Conf. Ser. 432, 012024 (2013).

    Article  ADS  Google Scholar 

  75. B. Rosenstein, H.-L. Yu, A. Kovner, Phys. Lett. B 314, 381 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Chandrasekharan.

Additional information

Communicated by S. Hands

Contribution to the Topical Issue “Lattice Field Theory Methods in Hadron and Nuclear Physics” edited by Simon Hands and Hartmut Wittig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekharan, S. Fermion bag approach to fermion sign problems. Eur. Phys. J. A 49, 90 (2013). https://doi.org/10.1140/epja/i2013-13090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13090-y

Keywords

Navigation