Skip to main content

Advertisement

Log in

Improved energy resolution of highly segmented HPGe detectors by noise reduction

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Built-in redundancies in highly segmented high-purity Ge detectors are exploited to increase the energy resolution of these semiconductor devices for detection of electromagnetic radiation in the X-ray and γ-ray regime. The information of the two electronically decoupled independent measurements, the cathode and the anode electrodes, provides an improved signal-to-noise ratio through a combination of the individually measured signals performed on an event-by-event basis. The average energy resolution values of the AGATA triple cluster detector for an energy deposition of 60keV was measured to be 1.1 keV (FWHM) for the 36 segments and 1.2 keV for the core. The averaged signals of the core and the segments show an improved resolution value of 0.87 keV which is close to the expected theoretical limit. At higher γ-ray energy the averaging technique allows for an enhanced energy resolution with a FWHM of 2.15keV at 1.3MeV. By means of the position sensitive operation of AGATA a new value for the Fano factor was determined and the noise contributions to the FWHM of a γ-ray peak separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGATA homepage http://www.agata.org/ and http://www.agata.org/links.

  2. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012).

    Article  ADS  Google Scholar 

  3. J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008).

    Article  ADS  Google Scholar 

  4. The official GRETINA homepage http://grfs1.lbl.gov/.

  5. I.Y. Lee, Nucl. Instrum. Methods A 422, 195 (1999).

    Article  ADS  Google Scholar 

  6. M.A. Deleplanque, I.Y. Lee, K. Vetter, G.J. Schmid, F.S. Stephens, R.M. Clark, R.M. Diamond, P. Fallon, A.O. Macchiavelli, Nucl. Instrum. Methods A 430, 292 (1999).

    Article  ADS  Google Scholar 

  7. P.-A. Söderström et al., Nucl. Instrum. Methods A 638, 96 (2011).

    Article  ADS  Google Scholar 

  8. for the AGATA Collaboration (B. Bruyneel, B. Birkenbach, J. Eberth, H. Hess, Gh. Pascovici, P. Reiter, A. Wiens, D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia), to be published in Eur. Phys. J. A.

  9. G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, Inc., New York, 2000).

  10. H.R. Bilger, Phys. Rev. 163, 238 (1967).

    Article  ADS  Google Scholar 

  11. A. Owens, Nucl. Instrum. Methods A 238, 473 (1985).

    Article  ADS  Google Scholar 

  12. A. Wiens, Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors, PhD thesis, University of Cologne (2011).

  13. G. Pascovici, A. Pullia, F. Zocca, B. Bruyneel, D. Bazzacco, WSEAS Trans. Circuits Syst. 7, 470 (2008).

    Google Scholar 

  14. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici, in 2007 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (Honolulu, Hawaii, USA, 2007) paper N03-2, ISBN 1-4244-0923-3/07, pp. 7--13.

  15. A. Pullia, G. Pascovici, B. Cahan, D. Weisshaar, C. Boiano, R. Bassini, M. Petcu, F. Zocca, in 2004 IEEE Nuclear Science Symposium Conference Record, Rome, Italy, 16-22 Oct. 2004, Vol. 3, pp. 1411-1414. .

  16. B. Birkenbach, B. Bruyneel, G. Pascovici, J. Eberth, H. Hess, D. Lersch, P. Reiter, A. Wiens, Nucl. Instrum. Methods A 640, 176 (2011).

    Article  ADS  Google Scholar 

  17. J. Kiko, Nucl. Instrum. Methods A 482, 434 (2002).

    Article  ADS  Google Scholar 

  18. for the AGATA Collaboration (A. Wiens, H. Hess, B. Birkenbach, B. Bruyneel, J. Eberth, D. Lersch, G. Pascovici, P. Reiter, H.-G. Thomas), Nucl. Instrum. Methods A 618, 223 (2010).

    Article  ADS  Google Scholar 

  19. XIA LLC 31057 Genstar Rd. Hayward CA 94544 USA, User’s manual digital gamma finder (DGF), 3rd edition (2003) http://www.xia.com.

  20. Wolfram Mathworld - Covariance, http://mathworld.wolfram.com/Covariance.html.

  21. T.W. Raudorf, R.H. Pehl, Nucl. Instrum. Methods A 255, 538 (1987).

    Article  ADS  Google Scholar 

  22. B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, D. Weisshaar, Nucl. Instrum. Methods A 599, 196 (2009).

    Article  ADS  Google Scholar 

  23. for the AGATA Collaboration (B. Bruyneel, P. Reiter, A. Wiens, J. Eberth, H. Hess, G. Pascovici, N. Warr, S. Aydin, D. Bazzacco, F. Recchia), Nucl. Instrum. Methods A 608, 99 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P. Reiter.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Cite this article

for the AGATA Collaboration., Wiens, A., Birkenbach, B. et al. Improved energy resolution of highly segmented HPGe detectors by noise reduction. Eur. Phys. J. A 49, 47 (2013). https://doi.org/10.1140/epja/i2013-13047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13047-2

Keywords

Navigation