Skip to main content
Log in

Levitation methods for structural and dynamical studies of liquids at high temperatures

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In recent years, levitation methods have been increasingly used to study the atomic structure and dynamics of high-temperature liquids, in particular metallic melts. These methods provide a containerless and, consequently, high-purity sample environment. No corrections for signals due to a crucible need to be made, and deep undercoolings of the liquid become possible, reducing the effect of thermal fluctuations. On the other hand, the sample position and, hence, the scattering geometry is not fixed and the free sample surface exhibits capillary waves. Nevertheless, the combination of levitation techniques with x-ray or neutron sources has proven to be possible and successful. This paper reviews the progress made in this field during the last 10 years or so. It discusses the different levitation techniques: aerodynamic, electromagnetic, electrostatic, as well as the applied spectroscopic techniques: x-ray and neutron diffraction, x-ray absorption and quasi-elastic neutron diffraction. Some recent results are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.M. Herlach, Mat. Sci. Eng. R12, 177 (1994)

    Google Scholar 

  2. L.M. Racz, I. Egry, Rev. Sci. Instrum. 66, 4254 (1995)

    Article  ADS  Google Scholar 

  3. F.C. Frank, Proc. R. Soc. London A 215, 43 (1952)

    Article  ADS  Google Scholar 

  4. D. Holland-Moritz, D.M. Herlach, K. Urban, Phys. Rev. Lett. 71, 1196 (1993)

    Article  ADS  Google Scholar 

  5. R. Weber, S. Krishnan, P. Nordine, JOM Mag 43, 8 (1991)

    Article  Google Scholar 

  6. G. Jacobs, I. Egry, K. Maier, D. Platzek, J. Reske, R. Frahm, Rev. Sci. Instr. 67, 3683 (1996)

    Article  ADS  Google Scholar 

  7. S. Krishnan, D. Price, J. Phys.: Condens. Matter 12, R145 (2000)

    Article  ADS  Google Scholar 

  8. L. Hennet, D. Thiaudière, M. Gailhanou, C. Landron, J.P. Coutures, D.L. Price, Rev. Sci. Instrum. 73, 125 (2002)

    Article  ADS  Google Scholar 

  9. C. Landron, L. Hennet, T.E. Jenkins, G.N. Greaves, J.P. Coutures, A.K. Soper, Phys. Rev. Lett. 86, 4839 (2001)

    Article  ADS  Google Scholar 

  10. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003)

    Article  ADS  Google Scholar 

  11. G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett. 93, 037802 (2004)

    Article  ADS  Google Scholar 

  12. K. Higuchi, K. Kimura, A. Mizuno, M. Watanabe, Y. Katayama, K. Kuribayashi, J. Non-Crystall. Solids 353, 2997 (2007)

    Article  ADS  Google Scholar 

  13. G. Mathiak, I. Egry, L. Hennet, D. Thiaudiere, I. Pozdnyakova, D. Price, Int. J. Thermophysics 26, 1151 (2005)

    Article  ADS  Google Scholar 

  14. W.-K. Rhim, S.K. Chang, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, Rev. Sci. Instrum. 64, 2961 (1993)

    Article  ADS  Google Scholar 

  15. P. Paradis, T. Ishikawa, S. Yoda, Measurement Sci. Technology 16, 452 (2005)

    Article  ADS  Google Scholar 

  16. T. Ishikawa, P. Paradis, T. Itami, S. Yoda, Measurement Sci. Technology 16, 443 (2005)

    Article  ADS  Google Scholar 

  17. T. Kordel, D. Holland-Moritz, T. Unruh, J. Peters, A. Meyer (to be published)

  18. T.M. Hayes, J.B. Boyce, Sol. State Phys. 37, 173 (1982)

    Article  Google Scholar 

  19. A. Filipponi, J. Phys., Condens. Matter 13, R23 (2001)

    Article  ADS  Google Scholar 

  20. P. D’Angelo, A. Di Nola, A. Filipponi, N.V. Pavel, P.D. Roccatano, J. Chem. Phys. 100, 985 (1994)

    Article  ADS  Google Scholar 

  21. P. Pfalzer, J.-P. Urbach, M. Klemm, S. Horn, M.L. denBoer, A.I. Frenkel, J.P. Kirkland, Phys. Rev. B 60, 9335 (1999)

    Article  ADS  Google Scholar 

  22. G. Jacobs, I. Egry, Phys. Rev. B 59, 3961 (1999)

    Article  ADS  Google Scholar 

  23. H. Kimura, M. Watanabe, K. Izumi, T. Hibiya, D. Holland-Moritz, T. Schenk, K.-R. Bauchspieß, S. Schneider, I. Egry, K. Funakoshi, M. Hanfland, Appl. Phys. Letters 78, 604 (2001)

    Article  ADS  Google Scholar 

  24. D. Li, D. Herlach, Europhys. Lett. 34, 423 (1996)

    Article  ADS  Google Scholar 

  25. S. Ansell, S. Krishnan, J.J. Felten, D. Price, J. Phys. C11, 8167 (1999)

    Google Scholar 

  26. T.H. Kim, G.W. Lee, B. Sieve, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, K.F. Kelton, A.I. Goldman, Phys. Rev. Lett. 95, 085501 (2005)

    Article  ADS  Google Scholar 

  27. S. Krishnan, L. Hennet, T. Key, B. Glorieux, M.-L. Saboungi, D.L. Price, J. Non-Cryst. Sol. 253, 2975 (2007)

    Article  ADS  Google Scholar 

  28. G. Mathiak, J. Brillo, A. Bytchkov, I. Egry, L. Hennet, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)

    Article  ADS  Google Scholar 

  29. I. Egry, L. Hennet, M. Kehr, G. Mathiak, S. De Panfilis, I. Pozdnyakova, D. Zanghi, J. Chem. Phys., 129, 064508 (2008)

    Article  ADS  Google Scholar 

  30. D. Holland-Moritz, T. Schenk, P. Convert, T. Hansen, D.M. Herlach, Meas. Sci. Techn. 16, 372 (2005)

    Article  ADS  Google Scholar 

  31. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Phys. Rev. Lett., 89, 075507 (2002)

    Article  ADS  Google Scholar 

  32. D. Holland-Moritz, O. Heinen, R. Bellissent, T. Schenk, D.M. Herlach, Intern. J. Mat. Res. 97, 948 (2006)

    Google Scholar 

  33. D. Holland-Moritz, S. Stüber, H. Hartmann, T. Unruh, T. Hansen, A. Meyer. Phys. Rev. B 79, 064204 (2009)

    Article  ADS  Google Scholar 

  34. T. Schenk, V. Simonet, D. Holland-Moritz, R. Bellissent, T. Hansen, P. Convert, D.M. Herlach Europhys. Lett. 65, 34 (2004)

    Article  ADS  Google Scholar 

  35. T. Unruh, J. Neuhaus, W. Petry, Nucl. Instrum. Methods Phys. Res. A 580, 1414 (2007)

    ADS  Google Scholar 

  36. A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh, PRB 77, 092201 (2008)

    Article  ADS  Google Scholar 

  37. S. Mavila Chathoth, A. Meyer, M.M. Koza, F. Juranyi, Appl. Phys. Lett. 85, 4881 (2004)

    Article  ADS  Google Scholar 

  38. G. Mathiak, A. Griesche, K.H. Kraatz, G. Frohberg, J. Non-Cryst. Solids 205-207, 412 (1996)

    Article  ADS  Google Scholar 

  39. T. Itami, T. Masaki, H. Aoki, S. Munejiri, M. Uchida, S. Masumoto, K. Kamiyama, K. Hoshino, J. Non-Cryst. Solids 232-314, 177 (2002)

    Article  Google Scholar 

  40. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992)

    Article  Google Scholar 

  41. S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Phys. Rev. B 81, 024204 (2010)

    Article  ADS  Google Scholar 

  42. S. Mavila Chathoth, A. Meyer, M.M. Koza, F. Juranyi, Appl. Phys. Lett. 85, 4881 (2004)

    Article  ADS  Google Scholar 

  43. Y. Plevachuk, I. Egry, J. Brillo, D. Holland-Moritz, I. Kaban, Int. J. Mater. Res. 98, 107 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egry, I., Holland-Moritz, D. Levitation methods for structural and dynamical studies of liquids at high temperatures. Eur. Phys. J. Spec. Top. 196, 131–150 (2011). https://doi.org/10.1140/epjst/e2011-01424-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01424-1

Keywords

Navigation