Skip to main content
Log in

Binary granular gas mixtures: Theory, layering effects and some open questions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A theory of dilute binary granular gas mixtures comprising smooth spheres, which is formally valid for all physical values of the pertinent coefficients of restitution, is presented. Constitutive relations are obtained using the Chapman Enskog procedure, in the framework of which relatively high orders in the Sonine polynomial expansion are employed. The latter is made possible by a computer-aided method. The transport coefficients are shown to converge as a function of the number of Sonine polynomials employed, typically requiring 3 polynomials, but in some cases up to 6 polynomials are required for convergence to within 1%. A comparison with results obtained using the Grad method helps reveal the limitations of the Chapman-Enskog expansion. In particular, in some cases both the Chapman Enskog expansion and the Grad method give unphysical results, though they agree with each other. These issues are related to the lack of scale separation in granular gases. Using the constitutive relations we obtain a novel segregation pattern in vertically vibrated granular mixtures, which comprises up to five layers; this is an extension of a previously obtained three-layer configuration. Finally, the question of effective hydrodynamic boundary conditions at the transition to the Knudsen regime is discussed: in particular, it seems that in some cases the boundary condition for the heat flux in the hydrodynamic regime is “unphysical”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.T. Jenkins, F. Mancini, Phys. Fluids A 1, 2050 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. B.O. Arnarson, J. Willits, Phys. Fluids 10, 1324 (1998)

    Article  ADS  Google Scholar 

  3. M. Alam, J.T. Willits, B.O. Arnarson, S. Luding, Phys. Fluids 14, 4085 (2002)

    Article  ADS  Google Scholar 

  4. B. Arnarson, J.T. Jenkins, Phys. Fluids 16, 4543 (2004)

    Article  ADS  Google Scholar 

  5. D. Serero, I. Goldhirsch, S.H. Noskowicz, M.L. Tan, J. Fluid Mech. 554, 237 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. N. Sela, I. Goldhirsch, J. Fluid Mech. 361, 41 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. V. Garzó, J.W. Dufty, Phys. Fluids 14, 1476 (2002)

    Article  ADS  Google Scholar 

  8. V. Garzó, J.M. Montanero, J. Stat. Phys. 129, 27 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. V. Garzó, J.M. Montanero, Phys. Rev. E 68, 041302 (2003)

    Article  ADS  Google Scholar 

  10. V. Garzó, C.M. Hrenya, J.W. Dufty, Phys. Rev. E 76, 031303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Garzó, C.M. Hrenya, J.W. Dufty, Phys. Rev. E 76, 031304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. N.V. Brillantov, T. Pöschel, Europhys. Lett. 74, 424 (2006)

    Article  ADS  Google Scholar 

  13. S.H. Noskowicz, O. Bar-Lev, D. Serero, I. Goldhirsch, Europhys. Lett. 79, 60001 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. V. Garzó, F.V. Reyes, J.M. Montanero, J. Fluid Mech. 623, 387 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. V. Garzó, A. Santos, J.M. Montanero, Physica A 376, 97 (2007)

    Article  ADS  Google Scholar 

  16. D. Serero, S.H. Noskowicz, I. Goldhirsch, Gran. Matt. 10, 37 (2007)

    Article  Google Scholar 

  17. D. Serero, C. Goldenberg, S.H. Noskowicz, I. Goldhirsch, Powder Tech. 182, 257 (2008)

    Article  Google Scholar 

  18. H. Grad, Commun. Pure Appl. Maths. 2, 331 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  19. J.T. Jenkins, M.W. Richman, Arch. Rat. Mech. Anal. 87, 355 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Zamankhan, Phys. Rev. E 52, 4877 (1995)

    Article  ADS  Google Scholar 

  21. J.M. Ottino, D.V. Khakhar, Annu. Rev. Fluid Mech. 32, 55 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Shinbrot, F.J. Muzzio, Physics Today 53, 25 (2000)

    Article  Google Scholar 

  23. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004)

    Article  ADS  Google Scholar 

  24. S. Ulrich, M. Schröter, H.L. Swinney, Phys. Rev. E 76, 042301 (2007)

    Article  ADS  Google Scholar 

  25. C. Bizon, M.D. Shattuck, J.B. Swift, H.L. Swinney, Phys. Rev. E 60, 4340 (1999)

    Article  ADS  Google Scholar 

  26. R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. E 63, 061311 (2001)

    Article  ADS  Google Scholar 

  27. R.D. Wildman, J.M. Huntley, D.J. Parker, D.A. Allen, Phys. Rev. E 62, 3826 (2000)

    Article  ADS  Google Scholar 

  28. H. Viswanathan, R.D. Wildman, J.M. Huntley, T.W. Martin, Phys. Fluids 18, 113302 (2006)

    Article  ADS  Google Scholar 

  29. R.D. Wildman, J.T. Jenkins, P.E. Krouskop, J. Talbot, Phys. Fluids 18, 073301 (2006)

    Article  ADS  Google Scholar 

  30. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  31. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  32. D.C. Hong, P.V. Quinn, S. Luding, Phys. Rev. Lett. 86, 3423 (2001)

    Article  ADS  Google Scholar 

  33. M. Schröter, S. Ulrich, J. Keft, J.B. Swift, H.L. Swinney, Phys. Rev. E 74, 011307 (2006)

    Article  ADS  Google Scholar 

  34. I. Goldhirsch, D. Ronis, Phys. Rev. A 27, 1616 (1983)

    Article  ADS  Google Scholar 

  35. I. Goldhirsch, D. Ronis, Phys. Rev. A 27, 1635 (1983)

    Article  ADS  Google Scholar 

  36. S.S. Hsiau, M.L. Hunt, Acta Mech. 114, 121 (1996)

    Article  MATH  Google Scholar 

  37. J.M. Kincaid, E.G.D. Cohen, M. Lopez de Haro, J. Chem. Phys. 86, 963 (1987)

    Article  ADS  Google Scholar 

  38. V. Garzó, Europhys. Lett. 75, 521 (2006)

    Article  ADS  Google Scholar 

  39. V. Garzó, Phys. Rev. E 78, 020301 (2008)

    Article  ADS  Google Scholar 

  40. J.T. Jenkins, D.K. Yoon, Phys. Rev. Lett. 88, 194304 (2002)

    Article  ADS  Google Scholar 

  41. D.K. Yoon, J.T. Jenkins, Phys. Fluids 18, 073303 (2006)

    Article  ADS  Google Scholar 

  42. L. Trujillo, M. Alam, H.J. Herrmann, Europhys. Lett. 64, 190 (2003)

    Article  ADS  Google Scholar 

  43. J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. E 63, 061305 (2001)

    Article  ADS  Google Scholar 

  44. J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. Lett. 95, 098001 (2005)

    Article  ADS  Google Scholar 

  45. S. Chapman, T.G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge Univ. Press, London, 1970)

  46. S.E. Esipov, T. Pöschel, J. Stat. Phys. 86, 1385 (1997)

    Article  MATH  ADS  Google Scholar 

  47. T. Pöschel, N.V. Brillantov, A. Formella, Phys. Rev. E 74, 041302 (2006)

    Article  ADS  Google Scholar 

  48. R. Ramirez, D. Risso, R. Soto, P. Cordero, Phys. Rev. E 62, 2521 (2000)

    Article  ADS  Google Scholar 

  49. A. Santos, V. Garzó, W.D. Dufty, Phys. Rev. E 69, 061303 (2004)

    Article  ADS  Google Scholar 

  50. S.R. Dahl, C.M. Hrenya, G.V., D.J. W., Phys. Rev. E 66, 041301 (2002)

    Article  ADS  Google Scholar 

  51. V. Garzó, J.W. Dufty, Phys. Rev. E 60, 5706 (1999)

    Article  ADS  Google Scholar 

  52. D. Serero, S.H. Noskowicz, I. Tan, M.L. Goldhirsch, Math. Model. Nat. Phenom. (2009) (to be published)

  53. Z.H. Jang, K.Q. Lu, M.Y. Hou, W. Chen, X.J. Chen, Acta Physica Sinica 52, 2244 (2003)

    Google Scholar 

  54. Q.F. Shi, G. Sun, M.Y. Hou, K.Q. Lu, Chin. Phys. Lett. 23, 3080 (2006)

    Article  ADS  Google Scholar 

  55. D. Serero, Ph.D. thesis, Tel Aviv University (2009)

  56. J.J. Brey, M.J. Ruiz-Montero, Europhys. Lett. 66, 805 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Serero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serero, D., Noskowicz, S., Tan, ML. et al. Binary granular gas mixtures: Theory, layering effects and some open questions. Eur. Phys. J. Spec. Top. 179, 221–247 (2009). https://doi.org/10.1140/epjst/e2010-01205-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01205-4

Keywords

Navigation