Skip to main content
Log in

High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new high pressure-temperature (P -T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( \(\ensuremath \sim 30000\) psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical \(\ensuremath Q_{{\rm z}}\) range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P -T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P -T NR applications and perspectives on future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. US Department of Energy report on the workshop: Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems, Bethesda, MD, USA, 2007, chair D.J. DePaolo (BES, DOE, 2007)

  2. J.W. Carey et al., Int. J. Greenh. Gas Con. 4, 272 (2010) DOI:10.1016/j.ijggc.2009.09.018

    Article  Google Scholar 

  3. Massachusetts Institute of Technology report: The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century, Cambridge, MA, USA, 2006, chair J.T. Tester (MIT, 2006)

  4. S. Lambert, Appl. Geochem. 7, 513 (1992)

    Article  Google Scholar 

  5. Y. Todo et al., Science 307, 689 (2004)

    Article  Google Scholar 

  6. P. Sébert, Comparative High Pressure Biology (Science Publishers, Enfield, NH, USA, 2010)

  7. I. Daniel, P. Oger, R. Winter, Chem. Soc. Rev. 35, 858 (2006) DOI:10.1039/b517766a

    Article  Google Scholar 

  8. M.R. Arnold, H.R. Kalbitzer, W. Kremer, J. Magn. Reson. 161, 127 (2003) DOI:10.1016/s1090-7807(02)00179-9

    Article  ADS  Google Scholar 

  9. H. Vass et al., Rev. Sci. Instrum. 81, 053710 (2010) DOI:10.1063/1.3427224

    Article  ADS  Google Scholar 

  10. M. Kamphausen, Rev. Sci. Instrum. 46, 668 (1975) DOI:10.1063/1.1134286

    Article  ADS  Google Scholar 

  11. P.M. Duesing, R.H. Templer, J.M. Seddon, Rev. Sci. Instrum. 67, 4228 (1996) DOI:10.1063/1.1147573

    Article  ADS  Google Scholar 

  12. D. Dysthe et al., Chem. Geol. 230, 232 (2006) DOI:10.1016/j.chemgeo.2006.02.028

    Article  Google Scholar 

  13. M.J. Watson et al., Rev. Sci. Instrum. 74, 2778 (2003) DOI:10.1063/1.1568555

    Article  ADS  Google Scholar 

  14. A.S. Lea et al., Rev. Sci. Instrum. 82, 043709 (2011) DOI:10.1063/1.3580603

    Article  ADS  Google Scholar 

  15. T.S. Dyman et al., U.S. Geol. Surv. Bull. 2146-C, 19 (1997)

    Google Scholar 

  16. L. Burke, U.S. Geol. Surv. Open-File Report 1086, 2 (2011)

    Google Scholar 

  17. U. Hammes, H.S. Hamlin, T.E. Ewing, AAPG Bull. 95, 1643 (2011)

    Article  Google Scholar 

  18. R. Kerr, E. Kintisch, E. Stokstad, Science 328, 674 (2010) DOI:10.1126/science.328.5979.674

    Article  ADS  Google Scholar 

  19. D.J. Duquette, R.M. Latanision, C.A.W. Di Bella, B.E. Kirstein, Corrosion 65, 272 (2009)

    Article  Google Scholar 

  20. R. Lidskog, A. Andersson The Management of Radioactive Waste A Description of Ten Countries (EDRAM, Obrero, Sweden, 2002)

    Article  Google Scholar 

  21. US Department of Energy report on the workshop: Basic Research Needs for Materials Under Extreme Environments, Washington DC, USA, 2007, chair J. Wadsworth (BES, DOE, 2008)

  22. Y. Zhao et al., Appl. Phys. 99, 585 (2010) DOI:10.1007/s00339-010-5640-1

    Google Scholar 

  23. D.A. Doshi et al., Langmuir 21, 7805 (2005)

    Article  Google Scholar 

  24. M. Kreuzer et al., Rev. Sci. Instrum. 82, 023902 (2011) DOI:10.1063/1.3505797

    Article  ADS  Google Scholar 

  25. C. Jeworrek et al., Rev. Sci. Instrum. 82, 025106 (2011) DOI:10.1063/1.3553392

    Article  ADS  Google Scholar 

  26. J. Han, J.W. Carey, J. Zhang, J. Appl. Electrochem. 41, 741 (2011) DOI:10.1007/s10800-011-0290-3

    Article  Google Scholar 

  27. M. Dubey et al., Eur. Phys. J. Plus 126, 110 (2011) DOI:10.1140/epjp/i2011-11110-1

    Article  Google Scholar 

  28. R.E. Fortney, C.H. Avery, Report No. 56-585 (1957)

  29. J.R. Davis, Aluminum and Aluminum Alloys (ASM International, 1993)

  30. J.R. Holloway, C.W. Burnham, G.L. Millhollen, J. Geophys. Res. 73, 6598 (1968)

    Article  ADS  Google Scholar 

  31. L. Parratt, Phys. Rev. 95, 359 (1954) DOI:10.1103/PhysRev.95.359

    Article  ADS  Google Scholar 

  32. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 411 (1953)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Hickmott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Lerner, A.H., Taylor, M. et al. High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies. Eur. Phys. J. Plus 127, 76 (2012). https://doi.org/10.1140/epjp/i2012-12076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12076-0

Keywords

Navigation