Skip to main content
Log in

Coarsening dynamics of three-dimensional levitated foams: From wet to dry

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study diamagnetically levitated foams with widely different liquid fractions. Due to the levitation, drainage is effectively suppressed and the dynamics is driven by the coarsening of the foam bubbles. For dry foams, the bubble size is found to increases as the square root of foam age, as expected from a generalized von Neumann law. At higher liquid content the behavior changes to that of Ostwald ripening where the bubbles grow with the 1/3 power of the age. Using Diffusing Wave Spectroscopy we study the local dynamics in the different regimes and find diffusive behavior for dry foams and kinetic behavior for wet foams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, 1999).

  2. S.A. Koehler et al., Phys. Rev. E 58, 2097 (1998).

    Article  ADS  Google Scholar 

  3. J.A. Glazier, S.P. Gross, J. Stavans, Phys. Rev. A 36, 306 (1987).

    Article  ADS  Google Scholar 

  4. A.E. Roth, C.D. Jones, D.J. Durian, Phys. Rev. E 87, 042304 (2013).

    Article  ADS  Google Scholar 

  5. L.D. Landau, E.M. Lifshitz, Course in Theoretical Physics VI: Fluid Dynamics (Butterworth-Heinemann, Oxford, 2000).

  6. J. von Neumann, in Metal Interfaces, edited by C. Herring, Vol. 108 (American Society for Metals, Cleveland, 1952).

  7. C.P. Gonatas et al., Phys. Rev. Lett. 75, 573 (1995).

    Article  ADS  Google Scholar 

  8. J. Lambert et al., Phys. Rev. Lett. 104, 248304 (2010).

    Article  ADS  Google Scholar 

  9. S. Hilgenfeldt, S.A. Koehler, H.A. Stone, Phys. Rev. Lett. 86, 4704 (2001).

    Article  ADS  Google Scholar 

  10. S. Hutzler, D. Weaire, Philos. Mag. Lett. 80, 419 (2000).

    Article  ADS  Google Scholar 

  11. W. Braunbeck, Z. Phys. 112, 764 (1939).

    Article  ADS  Google Scholar 

  12. M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997).

    Article  MathSciNet  Google Scholar 

  13. R. Straub, Diploma thesis (University Konstanz, 2008).

  14. A. Saint-Jalmes, S. Marze, M. Safouane, D. Langevin, Micrograv. Sci. Technol. XVIII, 5 (2006).

    Google Scholar 

  15. J. Lambert et al., Phys. Rev. Lett. 99, 058304 (2007).

    Article  ADS  Google Scholar 

  16. R.D. MacPhearson, D.J. Srolovitz, Nature 446, 1053 (2007).

    Article  ADS  Google Scholar 

  17. W. Ostwald, Z. Phys. Chem. 37, 385 (1901).

    Google Scholar 

  18. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  19. C. Wagner, Z. Elektr, Inf.-Energietech. 65, 581 (1961).

    Google Scholar 

  20. A.J. Markworth, Metallography 3, 197 (1970).

    Article  Google Scholar 

  21. W.W. Mullins, J. Appl. Phys. 59, 1341 (1986).

    Article  ADS  Google Scholar 

  22. A. Knaebel et al., Europhys. Lett. 52, 73 (2000).

    Article  ADS  Google Scholar 

  23. I. Fortuna et al., Phys. Rev. Lett. 108, 248301 (2012).

    Article  ADS  Google Scholar 

  24. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, 1995).

  25. M.U. Vera, A. Saint-Jalmes, D.J. Durian, Appl. Opt. 40, 4210 (2001).

    Article  ADS  Google Scholar 

  26. D.J. Durian, D.A. Weitz, D.J. Pine, Phys. Rev. A 44, R7902 (1991).

    Article  ADS  Google Scholar 

  27. S. Cohen-Addad, R. Höhler, Phys. Rev. Lett. 86, 4700 (2001).

    Article  ADS  Google Scholar 

  28. A. Stucco et al., Soft Matter 7, 631 (2011).

    Article  ADS  Google Scholar 

  29. G. Maret, P.E. Wolf, Z. Phys. B 65, 409 (1987).

    Article  ADS  Google Scholar 

  30. D.J. Pine, D.A. Weitz, J.X. Zhu, E. Herbolzheimer, J. Phys. 51, 2101 (1990).

    Article  Google Scholar 

  31. A. Saint-Jalmes, M.U. Vera, D.J. Durian, Eur. Phys. J. B 12, 67 (1999).

    Article  ADS  Google Scholar 

  32. A.D. Gopal, D.J. Durian, J. Opt. Soc. Am. A 14, 150 (1997).

    Article  ADS  Google Scholar 

  33. C.C. Maass, N. Isert. G. Maret, C.M. Aegerter, Phys. Rev. Lett. 100, 248001 (2008).

    Article  ADS  Google Scholar 

  34. G. Maret, Curr. Op. Colloid Int. Sci 2, 251 (1997).

    Article  Google Scholar 

  35. A.S. Gittings, R. Bandyopadhyay, D.J. Durian, Europhys. Lett. 65, 414 (2004).

    Article  ADS  Google Scholar 

  36. M. Le Merrer, S. Cohen-Addad, R. Höhler, Phys. Rev. Lett. 108, 188301 (2012).

    Article  ADS  Google Scholar 

  37. D.J. Durian, D.A. Weitz, D.J. Pine, Science 252, 686 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Aegerter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isert, N., Maret, G. & Aegerter, C.M. Coarsening dynamics of three-dimensional levitated foams: From wet to dry. Eur. Phys. J. E 36, 116 (2013). https://doi.org/10.1140/epje/i2013-13116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13116-x

Keywords

Navigation