Skip to main content
Log in

Comparison of A-block polydispersity effects on BAB triblock and AB diblock copolymer melts

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Recent experiments on triblock copolymer melts suggest that polydispersity effects are dramatically enhanced when polydisperse blocks are constrained by both ends to the internal interfaces of an ordered morphology. To quantify the relevance of architecture, we compare BAB triblock and AB diblock copolymer melts with polydisperse A blocks and monodisperse B blocks, using self-consistent field theory (SCFT). We do, in fact, find an enhanced shift in the order-order transitions (OOTs) of the triblock copolymer system in good agreement with the experiments, which we attribute to a reduction of entropy in the A-rich domains due to the absence of chain ends. There is also a slightly enhanced dilation of the domains, but not nearly to the same degree as reported by the experiments. Unlike in the experiments, our calculations indicate that the polydispersity-induced shifts in the order-disorder transition (ODT) should be quantitatively similar for both diblocks and triblocks. It is possible that some of the pronounced effects observed in the experiments have more to do with the detailed shape of the molecular-weight distribution than the triblock architecture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Hillmyer, J. Polym. Sci. Part B 45, 3249 (2007).

    Article  Google Scholar 

  2. N.A. Lynd, A.J. Meuler, M.A. Hillmyer, Prog. Polym. Sci. 33, 875 (2008).

    Article  Google Scholar 

  3. D. Bendejacq, V. Ponsinet, M. Joanicot, Y.-L. Loo, R.A. Register, Macromolecules 35, 6645 (2002).

    Article  ADS  Google Scholar 

  4. N.A. Lynd, B.D. Hamilton, M.A. Hillmyer, J. Polym. Sci. Part B. 45, 3386 (2007).

    Article  Google Scholar 

  5. N.A. Lynd, M.A. Hillmyer, Macromolecules 38, 8803 (2005).

    Article  ADS  Google Scholar 

  6. N.A. Lynd, M.A. Hillmyer, Macromolecules 40, 8050 (2007).

    Article  ADS  Google Scholar 

  7. J. Listak, W. Jakubowski, L. Mueller, A. Plichta, K. Matyjaszewski, M.R. Bockstaller, Macromolecules 41, 5919 (2008).

    Article  ADS  Google Scholar 

  8. A.-V. Ruzette, S. Tencé-Girault, L. Leibler, F. Chauvin, D. Bertin, O. Guerret, P. Gérard, Macromolecules 39, 5804 (2006).

    Article  ADS  Google Scholar 

  9. D.M. Cooke, A.-C. Shi, Macromolecules 39, 6661 (2006).

    Article  ADS  Google Scholar 

  10. M.W. Matsen, Eur. Phys. J. E 21, 199 (2006).

    Article  Google Scholar 

  11. M.W. Matsen, Phys. Rev. Lett. 99, 148304 (2007).

    Article  ADS  Google Scholar 

  12. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 22, 853 (1989).

    Article  ADS  Google Scholar 

  13. T.M. Beardsley, M.W. Matsen, Eur. Phys. J. E 27, 323 (2008).

    Article  Google Scholar 

  14. T.M. Beardsley, M.W. Matsen, Macromolecules 44, 6209 (2011).

    Article  Google Scholar 

  15. S.W. Sides, G.H. Fredrickson, J. Chem. Phys. 121, 4974 (2004).

    Article  ADS  Google Scholar 

  16. J.M. Widin, A.K. Schmitt, K. Im, A.L. Schmitt, M.K. Mahanthappa, Macromolecules 43, 7913 (2010).

    Article  Google Scholar 

  17. A.L. Schmitt, M.K. Mahanthappa, Soft Matter 8, 2294 (2012).

    Article  ADS  Google Scholar 

  18. J.M. Widin, A.K. Schmitt, A.L. Schmitt, K. Im, M.K. Mahanthappa, J. Am. Chem. Soc. 134, 3834 (2012).

    Article  Google Scholar 

  19. M.W. Matsen, Macromolecules 45, 2161 (2012).

    Article  ADS  Google Scholar 

  20. E. Helfand, J. Chem. Phys. 62, 999 (1975).

    Article  ADS  Google Scholar 

  21. A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).

    Google Scholar 

  22. M.W. Matsen, Eur. Phys. J. E 33, 297 (2010).

    Article  Google Scholar 

  23. M.W. Matsen, in Soft Matter, Vol. 1: Polymer Melts and Mixtures, edited by G. Gompper, M. Schick (Wiley-VCH, Weinheim, 2006).

  24. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).

  25. M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2012).

    Article  ADS  Google Scholar 

  26. G.V.Z. Schulz, Z. Phys. Chem. (Munich) B43, 25 (1939).

    Google Scholar 

  27. B.H. Zimm, J. Chem. Phys. 16, 1099 (1948).

    Article  ADS  Google Scholar 

  28. M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).

    Article  ADS  Google Scholar 

  29. M.W. Matsen, Eur. Phys. J. E 30, 361 (2009).

    Article  Google Scholar 

  30. G.M. Grason, R.D. Kamien, Phys. Rev. Lett. 91, 7371 (2004).

    Google Scholar 

  31. G.M. Grason, B.A. DiDonna, R.D. Kamien, Phys. Rev. Lett. 91, 058304 (2003).

    Article  ADS  Google Scholar 

  32. B.-K. Cho, A. Jain, S.M. Gruner, U. Wiesner, Science 305, 1598 (2004).

    Article  ADS  Google Scholar 

  33. M.W. Matsen, R.B. Thompson, J. Chem. Phys. 111, 7139 (1999).

    Article  ADS  Google Scholar 

  34. M.W. Matsen, Macromolecules 28, 5765 (1995).

    Article  ADS  Google Scholar 

  35. M.W. Matsen, Macromolecules 36, 9647 (2003).

    Article  ADS  Google Scholar 

  36. M. Xenidou, F.L. Beyer, N. Hadjichristidis, S.P. Gido, N. Bech Tan, Macromolecules 31, 7659 (1998).

    Article  ADS  Google Scholar 

  37. C. Lee, S.P. Gido, Y. Poulos, N. Hadjichristidis, N. Bech Tan, S.F. Trevino, J.W. Mayes, Polymer 39, 4631 (1998).

    Article  Google Scholar 

  38. F. Beyer, S.P. Gido, C. Bushchi, H. Iatrou, D. Uhrig, J.W. Mayes, M. Chang, B.A. Garetz, N. Balsara, N. Bech Tan, N. Hadjichristidis, Macromolecules 33, 2039 (2000).

    Article  ADS  Google Scholar 

  39. S.-M. Mai, W. Mingvanish, S.C. Turner, C. Chaibundit, J.P.A. Fairclough, F. Heatley, M.W. Matsen, A.J. Ryan, C. Booth, Macromolecules 33, 5124 (2000).

    Article  ADS  Google Scholar 

  40. A.E. Likhtman, A.N. Semenov, Europhys. Lett. 51, 307 (2000).

    Article  ADS  Google Scholar 

  41. Middle blocks have a similar correction to eq. (eq:correction) for the entropy of their center segments, but it is roughly half the size. This is because each center segment becomes two ends when a middle block is snipped in half.

  42. L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994).

    Article  ADS  Google Scholar 

  43. P.M. Lipic, F.S. Bates, M.W. Matsen, J. Polym. Sci., Part B 37, 2229 (1999).

    Article  Google Scholar 

  44. L.M. Pitet, M.A. Hillmyer, Macromolecules 42, 3674 (2009).

    Article  ADS  Google Scholar 

  45. M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996).

    Article  ADS  Google Scholar 

  46. P.D. Hustad, G.R. Marchand, E.I. Garcia-Meitin, P.L. Roberts, J.D. Weinhold, Macromolecules 42, 3788 (2009).

    Article  ADS  Google Scholar 

  47. S. Li, R.A. Register, B.G. Landes, P.D. Hustad, J.D. Weinhold, Macromolecules 43, 4761 (2010).

    Article  ADS  Google Scholar 

  48. N.A. Lynd, M.A. Hillmyer, M.W. Matsen, Macromolecules 41, 4531 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. Matsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsen, M.W. Comparison of A-block polydispersity effects on BAB triblock and AB diblock copolymer melts. Eur. Phys. J. E 36, 44 (2013). https://doi.org/10.1140/epje/i2013-13044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13044-9

Keywords

Navigation