Skip to main content
Log in

Correlated electron-nuclear dissociation dynamics: classical versus quantum motion

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the coupled electron-nuclear dynamics in a model system which undergoes dissociation. In choosing different initial conditions, the cases of adiabatic and non-adiabatic dissociation are realized. We treat the coupled electronic and nuclear motion in the complete configuration space so that classically, no surface hopping procedures have to be incorporated in the case that more than a single adiabatic electronic state is populated during the fragmentation. Due to the anharmonic interaction potential, it is expected that classical mechanics substantially deviate from quantum mechanics. However, we provide examples where the densities and fragmentation yields obtained from the two treatments are in astonishingly strong agreement in the case that one starts in the electronic ground state initially. As expected, larger deviations are found if one starts in electronically excited states where trajectories are sampled from the more spatially extended electronic wave function. In that case, higher initial energies are accessed, and the motion proceeds in regions with increasing degree of anharmonicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993)

  2. N.E. Henriksen, Adv. Chem. Phys. 91, 433 (1995)

    Google Scholar 

  3. G. Herzberg, Spectra of Diatomic Molecules (van Nostrand Reinhold, New York, 1950)

  4. J. Tellinguisen, in: Photodissociation and Photoionization, edited by K.P. Lawley, 3rd edn. (Wiley, New York, 1985)

  5. E.J. Heller, Acc. Chem. Res. 14, 368 (1981)

    Article  Google Scholar 

  6. D.J. Tannor, Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, 2007)

  7. E.J. Heller, J. Chem. Phys. 65, 1289 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Goursaud, M. Sizun, F. Fiquet-Fayard, J. Chem. Phys. 65, 5453 (1976)

    Article  ADS  Google Scholar 

  9. E.J. Heller, J. Chem. Phys. 68, 2066 (1978)

    Article  ADS  Google Scholar 

  10. R. Schinke, J. Chem. Phys. 85, 5049 (1986)

    Article  ADS  Google Scholar 

  11. N.E. Henriksen, V. Engel, R. Schinke, J. Chem. Phys. 86, 6862 (1987)

    Article  ADS  Google Scholar 

  12. R.K. Preston, J.C. Tully, J. Chem. Phys. 54, 4297 (1971)

    Article  ADS  Google Scholar 

  13. V. Bonacić-Koutecký, R. Mitrić, Chem. Rev. 105, 11 (2005)

    Article  Google Scholar 

  14. L. Stella, M. Meister, A.J. Fisher, A.P. Horsfield, J. Chem. Phys. 127, 214104 (2007)

    Article  ADS  Google Scholar 

  15. L. Stella, R.P. Miranda, A.P. Horsfield, A.J. Fisher, J. Chem. Phys. 134, 194105 (2011)

    Article  ADS  Google Scholar 

  16. R. Mitric, J. Petersen, V. Bonacic-Koutecky, Phys. Rev. A 79, 053416 (2009)

    Article  ADS  Google Scholar 

  17. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, L. González, J. Chem. Theor. Comput. 7, 1253 (2011)

    Article  Google Scholar 

  18. S. Shin, H. Metiu, J. Chem. Phys. 102, 9285 (1995)

    Article  ADS  Google Scholar 

  19. S. Shin, H. Metiu, J. Phys. Chem. 100, 7867 (1996)

    Article  Google Scholar 

  20. M. Erdmann, P. Marquetand, V. Engel, J. Chem. Phys. 119, 672 (2003)

    Article  ADS  Google Scholar 

  21. M. Falge, V. Engel, S. Gräfe, J. Chem. Phys. 134, 184307 (2011)

    Article  ADS  Google Scholar 

  22. M. Falge, V. Engel, S. Gräfe, J. Phys. Chem. Lett. 3, 2617 (2012)

    Article  Google Scholar 

  23. A. Abedi, F. Agostini, Y. Suzuki, E.K.U. Gross, Phys. Rev. Lett. 110, 263001 (2013)

    Article  ADS  Google Scholar 

  24. F. Agostini, A. Abedi, Y. Suzuki, S. Min, N.T. Maitra, E. Gross, J. Chem. Phys. 142, 084303 (2015)

    Article  ADS  Google Scholar 

  25. S.K. Min, A. Abedi, K. Kim, E. Gross, Phys. Rev. Lett. 113, 263004 (2014)

    Article  ADS  Google Scholar 

  26. M. Erdmann, E.K.U. Gross, V. Engel, J. Chem. Phys. 121, 9666 (2004)

    Article  ADS  Google Scholar 

  27. M. Falge, P. Vindel-Zandbergen, V. Engel, M. Lein, B.Y. Chang, I.R. Sola, J. Phys. B 47, 124027 (2014)

    Article  ADS  Google Scholar 

  28. M. Erdmann, S. Baumann, S. Gräfe, V. Engel, Eur. Phys. J. D 30, 327 (2004)

    Article  ADS  Google Scholar 

  29. K. Hader, V. Engel, J. Chem. Phys. 136, 104306 (2012)

    Article  ADS  Google Scholar 

  30. J. Albert, D. Kaiser, V. Engel, J. Chem. Phys. 144, 171103 (2016)

    Article  ADS  Google Scholar 

  31. R. Kosloff, H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986)

    Article  ADS  Google Scholar 

  32. M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  33. N.E. Henriksen, V. Engel, Int. Rev. Phys. Chem. 20, 93 (2001)

    Article  Google Scholar 

  34. V. Engel, H. Metiu, R. Almeida, R.A. Marcus, A.H. Zewail, Chem. Phys. Lett. 152, 1 (1988)

    Article  ADS  Google Scholar 

  35. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  36. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1989)

  37. W.P. Schleich, Quantum Optics in Phase Space (WileyVCH, Berlin, 2001)

  38. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, Cambridge, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Engel.

Additional information

Contribution to the Topical Issue “Dynamics of Molecular Systems (MOLEC 2016)”, edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaupp, T., Albert, J. & Engel, V. Correlated electron-nuclear dissociation dynamics: classical versus quantum motion. Eur. Phys. J. D 71, 91 (2017). https://doi.org/10.1140/epjd/e2017-70725-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70725-6

Navigation