Skip to main content
Log in

Atomic coherence effects in few-cycle pulse induced ionization*

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The interaction of a short, few-cycle light pulse and an atom which is prepared initially in a superposition of two stationary states is shown to exhibit strong signatures of atomic coherence. For a given waveform of the laser pulse, appropriate quantum mechanical relative phase between the constituents of the initial superposition can increase the ionization probability by a factor of three. A similarly strong effect can be observed when the waveform of the ionizing pulse is changed. These results allow for intuitive explanations, which are in agreement with the numerical integration of the time dependent Schrödinger equation. A detailed analysis shows that the verification our findings is feasible experimentally.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krausz, T. Brabec, M. Schnürer, C. Spielmann, Opt. Photonics News 9, 46 (1998)

    Article  ADS  Google Scholar 

  2. V. Roudnev, B.D. Esry, Phys. Rev. Lett. 99, 220406 (2007)

    Article  ADS  Google Scholar 

  3. A. de Bohan, P. Antoine, D.B. Milošević, B. Piraux, Phys. Rev. Lett. 81, 1837 (1998)

    Article  ADS  Google Scholar 

  4. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz, Nature 421, 611 (2003)

    Article  ADS  Google Scholar 

  5. M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, C. Vozzi, M. Pascolini, L. Poletto, P. Villoresi, G. Tondello, Phys. Rev. Lett. 91, 213905 (2003)

    Article  ADS  Google Scholar 

  6. G.G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Phys. Rev. Lett. 91, 253004 (2003)

    Article  ADS  Google Scholar 

  7. G.G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S. De Silvestri, Nature 414, 182 (2001)

    Article  ADS  Google Scholar 

  8. E. Eremina, X. Liu, H. Rottke, W. Sandner, M.G. Schätzel, A. Dreischuh, G.G. Paulus, H. Walther, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 92, 173001 (2004)

    Article  ADS  Google Scholar 

  9. A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, Th. Udem, Ch. Lemell, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)

    Article  ADS  Google Scholar 

  10. P. Dombi, A. Apolonski, Ch. Lemell, G.G. Paulus, M. Kakehata, R. Holzwarth, Th. Udem, K. Torizuka, J. Burgdörfer, T.W. Hänsch, F. Krausz, New J. Phys. 6, 39 (2004)

    Article  ADS  Google Scholar 

  11. Q. Li, X.-M. Tong, T. Morishita, H. Wei, C.D. Lin, Phys. Rev. A 89, 023421 (2014)

    Article  ADS  Google Scholar 

  12. T. Nakajima, Phys. Rev. A 75, 053409 (2007)

    Article  ADS  Google Scholar 

  13. P. Hu, Y. Niu, Y. Xiang, S. Gong, Opt. Express 21, 24309 (2013)

    Article  ADS  Google Scholar 

  14. M.O. Scully, S. Zubairy, Quantum Optics (Cambridge University Press, 1997), Chap. 7

  15. F.I. Gauthey, C.H. Keitel, P.L. Knight, A. Maquet, Phys. Rev. A 52, 525 (1995)

    Article  ADS  Google Scholar 

  16. J.B. Watson, A. Sanpera, X. Chen, K. Burnett, Phys. Rev. A 53, R1962 (1996)

    Article  ADS  Google Scholar 

  17. T. Bredtmann, S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 84, 021401 (2011)

    Article  ADS  Google Scholar 

  18. T. Bredtmann, S. Chelkowski, A.D. Bandrauk, J. Phys. Chem. A 116, 11398 (2012)

    Article  Google Scholar 

  19. M.V. Fedorov, A.M. Movsesian, J. Phys. B 21, L155 (1988)

    Article  ADS  Google Scholar 

  20. M. Pont, M. Gavrila, Phys. Rev. Lett. 65, 2362 (1990)

    Article  ADS  Google Scholar 

  21. M.V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997)

  22. A.M. Popov, O.V. Tikhonova, E.A. Volkova, J. Phys. B 36, R125 (2003)

    Article  ADS  Google Scholar 

  23. J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. A 45, 4998 (1992)

    Article  ADS  Google Scholar 

  24. H.G. Muller, Laser Physics 9, 138 (1999)

    Google Scholar 

  25. M. Nisoli, S. De Silvestri, O. Svelto, Appl. Phys. Lett. 68, 2793 (1996)

    Article  ADS  Google Scholar 

  26. A.L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V.S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, R. Kienberger, New J. Phys. 9, 242 (2007)

    Article  ADS  Google Scholar 

  27. P. Dombi, V.S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, G. Tempea, Opt. Express 13, 10888 (2005), and references therein

    Article  ADS  Google Scholar 

  28. L. Allen, J.H. Eberly, Optical resonance and two-level atoms (Wiley, N.Y., 1975)

  29. C.F. Jitrik, Bunge Oliverio, J. Phys. Chem. Ref. Data 33, 1059 (2004)

    Article  ADS  Google Scholar 

  30. L.P. Yatsenko, V.I. Romanenko, B.W. Shore, T. Halfmann, K. Bergmann, Phys. Rev. A 71, 033418 (2005)

    Article  ADS  Google Scholar 

  31. S. Chelkowski, A.D. Bandrauk, A. Apolonski, Phys. Rev. A 70, 013815 (2004)

    Article  ADS  Google Scholar 

  32. Y.-C. Han, L.B. Madsen, Phys. Rev. A 81, 063430 (2010)

    Article  ADS  Google Scholar 

  33. L.B. Madsen, Phys. Rev. A 65, 053417 (2002)

    Article  ADS  Google Scholar 

  34. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  35. K. Rzazewski, R. Boyd, J. Mod. Opt. 51, 1137 (2004)

    Article  ADS  Google Scholar 

  36. A.D. Bandrauk, F. Fillion-Gourdeau, E. Lorin, J. Phys. B 46, 153001 (2013)

    Article  ADS  Google Scholar 

  37. H.R. Reiss, J. Phys. B 47, 204006 (2014)

    Article  ADS  Google Scholar 

  38. D.W. Peaceman, H.H. Rachford, J. Soc. Indus. Appl. Math. 3, 28 (1955)

    Article  Google Scholar 

  39. G. Sansone, C. Vozzi, S. Stagira, M. Pascolini, L. Poletto, P. Villoresi, G. Tondello, S. De Silvestri, M. Nisoli, Phys. Rev. Lett. 92, 113904 (2004)

    Article  ADS  Google Scholar 

  40. P. Tzallas, E. Skantzakis, D. Charalambidis, Phys. Rev. A 82, 061401 (2010)

    Article  ADS  Google Scholar 

  41. F.H.M. Faisal, P. Scanzano, Phys. Rev. Lett. 68, 2909 (1992)

    Article  ADS  Google Scholar 

  42. R. Kopold, W. Becker, M. Kleber, G.G. Paulus, J. Phys. B 35, 217 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Ayadi.

Additional information

Contribution to the Topical Issue “Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, V., Benedict, M.G., Dombi, P. et al. Atomic coherence effects in few-cycle pulse induced ionization*. Eur. Phys. J. D 70, 266 (2016). https://doi.org/10.1140/epjd/e2016-70507-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70507-8

Navigation