Skip to main content
Log in

Influence of metal ion complexation on the metastable fragmentation of DNA hexamers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here, we study the metastable decay of 5′-d(TTGCTT) in the presence of 0–6 alkaline metal ions (Li+, Na+, K+, Rb+) and 0−3 alkaline earth metal ions (Mg2+ and Ca2 +), which replace the corresponding number of protons in the oligonucleotide. We find that all ions studied here stabilize the oligonucleotide with respect to simple 3′-C–O backbone cleavage, but at the same time these metal ions promote a central oligonucleotide deletion accompanied by a concomitant recombination of the terminal d(TT) groups. We find that the quenching of the 3′-C–O backbone cleavage is not ion specific, since it is due to the removal of the phosphate protons upon replacement with the respective metal ions. The central nucleotide deletion competes with the 3′-C–O backbone cleavage channels and is thus promoted through the replacement of the exchangeable protons against metal ions. However, with increasing positive charge density of the metal ions the yield of the central nucleotide deletion further increases. We attribute this effect to the necessity of sufficient proximity of the terminal d(TT) group to allow for their recombination on this reaction path. Hence, the formation of a reactive conformer is mediated by the metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Müller, Metallomics 2, 318 (2010)

    Article  Google Scholar 

  2. M.A. Young, B. Jayaram, D.L. Beveridge, J. Am. Chem. Soc. 119, 59 (1997)

    Article  Google Scholar 

  3. X.Q. Shui, L. McFail-Isom, G.G. Hu, L.D. Williams, Biochemistry 37, 8341 (1998)

    Article  Google Scholar 

  4. F.C. Marincola, V.P. Denisov, B. Halle, J. Am. Chem. Soc. 126, 6739 (2004)

    Article  Google Scholar 

  5. N.B. Leontis, P. Ghosh, P.B. Moore, Biochemistry 25, 7386 (1986)

    Article  Google Scholar 

  6. C.C. Correll, B. Freeborn, P.B. Moore, T.A. Steitz, Cell 91, 705 (1997)

    Article  Google Scholar 

  7. M.J. Serra, J.D. Baird, T. Dale, B.L. Fey, K. Retatagos, E. Westhof, RNA 8, 307 (2002)

    Article  Google Scholar 

  8. S. Basu, R.P. Rambo, J. Strauss-Soukup, J.H. Cate, A.R. Ferre-D’Amare, S.A. Strobel, J.A. Doudna, Nat. Struct. Biol. 5, 986 (1998)

    Article  Google Scholar 

  9. D.M.J. Lilley, R.M. Clegg, Ann. Rev. Biophys. Biomol. Struct. 22, 299 (1993)

    Article  Google Scholar 

  10. B. Lippert, D. Gupta, Dalton Trans. 24, 4619 (2009)

    Article  Google Scholar 

  11. P. Schultze, N.V. Hud, F.W. Smith, J. Feigon, Nucleic Acids Res. 27, 3018 (1999)

    Article  Google Scholar 

  12. P.W.K. Rothemund, Nature 440, 297 (2006)

    Article  ADS  Google Scholar 

  13. A. Keller, I. Bald, A. Rotaru, E. Cauet, K.V. Gothelf, F. Besenbacher, ACS Nano 6, 4392 (2012)

    Article  Google Scholar 

  14. J. Gidden, E.S. Baker, A. Ferzoco, M.T. Bowers, Int. J. Mass Spectrom. 240, 183 (2005)

    Article  ADS  Google Scholar 

  15. V. Gabelica, E. De Pauw, J. Mass Spectrom. 36, 397 (2001)

    Article  Google Scholar 

  16. P.D. Schnier, J.S. Klassen, E.E. Strittmatter, E.R. Williams, J. Am. Chem. Soc. 120, 9605 (1998)

    Article  Google Scholar 

  17. F. Rosu, V. Gabelica, C. Houssier, P. Colson, E. De Pauw, Rapid Commun. Mass Spectrom. 16, 1729 (2002)

    Article  Google Scholar 

  18. D.R. Goodlett, D.G. Camp, C.C. Hardin, M. Corregan, R.D. Smith, Biol. Mass Spectrom. 22, 181 (1993)

    Article  Google Scholar 

  19. H.D. Flosadóttir, B. Omarsson, I. Bald, O. Ingólfsson, Eur. Phys. J. D 66, 13 (2012)

    Article  ADS  Google Scholar 

  20. I. Bald, H.D. Flosadóttir, B. Omarsson, O. Ingólfsson, Int. J. Mass Spectrom. 313, 15 (2012)

    Article  Google Scholar 

  21. H.D. Flosadóttir, K. Gislason, S.T. Sigurdsson, O. Ingólfsson, J. Am. Soc. Mass Spectrom. 23, 690 (2012)

    Article  Google Scholar 

  22. H.D. Flosadóttir, M. Stano, O. Ingólfsson, J. Am. Soc. Mass Spectrom. 20, 689 (2009)

    Article  Google Scholar 

  23. M. Stano, H.D. Flosadóttir, O. Ingólfsson, Rapid Commun. Mass Spectrom. 20, 3498 (2006)

    Article  Google Scholar 

  24. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  25. S.A. McLuckey, G.J. Vanberkel, G.L. Glish, J. Am. Soc. Mass Spectrom. 3, 60 (1992)

    Article  Google Scholar 

  26. E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilko Bald or Oddur Ingólfsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piekarczyk, A., Bald, I., Flosadóttir, H. et al. Influence of metal ion complexation on the metastable fragmentation of DNA hexamers. Eur. Phys. J. D 68, 146 (2014). https://doi.org/10.1140/epjd/e2014-40838-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40838-7

Keywords

Navigation