Skip to main content

Advertisement

Log in

Influence of plasma chemistry on oxygen triplets

  • Regular Article
  • Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The plasma chemistry of fluorocarbon-oxygen-argon discharges and its influence on prominent oxygen triplets are studied. The oxygen 777 triplet is very important for the measurement of atomic oxygen in low pressure plasmas, since the 777.417 nm spectral line is frequently used for actinometry. In this paper, we identify changes in the individual 777 triplet lines arising from cascade effects from higher energy levels of oxygen, and from resonant energy transfer from energetic carbon atoms in carbon-rich plasmas. The lower energy levels of three oxygen triplets (544 nm, 616 nm, 645 nm) are the upper states of the 777 triplet. Increased emission intensity from the 544, 616, and 645 triplets result in changes to the relative intensity of the individual lines of the 777 triplet, and this can lead to errors in using the 777 triplet, e.g. for actinometry. Also, in operational conditions with strong carbon emission (around 601 nm), the relative intensity of the individual oxygen 777 lines is affected. The upper energy levels of these carbon lines is close to the oxygen 777 upper energy levels, suggesting that resonant energy transfer between the carbon and the oxygen is occurring. The experiments are performed in a commercial semiconductor dielectric etcher operating with dual rf frequencies of 2 MHz and 27 MHz. Pressure (13–19 Pa), rf power (200–1200 W), and gas mixtures (argon with addmixtures of 5–13% oxygen and C4F8) are typical in application to dielectric etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. von Haeften, C. Binns, A. Brewer, O. Crisan, P.B. Howes, M.P. Lowe, C. Sibbley-Allen, S.C. Thornton, Eur. Phys. J. D 52, 11 (2009)

    Article  ADS  Google Scholar 

  2. J. Schäfer, R. Foest, A. Quade, A. Ohl, J. Meichsner, K.D. Weltmann, Eur. Phys. J. D 54, 211 (2009)

    Article  ADS  Google Scholar 

  3. Z. Machala, I. Jedlovský, L. Chládeková, B. Pongrác, D. Giertl, M. Janda, L. Šikurová, P. Polčic, Eur. Phys. J. D 54, 195 (2009)

    Article  ADS  Google Scholar 

  4. S. Gilb, K. Hartl, A. Kartouzian, J. Peter, U. Heiz, H.-G. Boyen, P. Ziemann, Eur. Phys. J. D 45, 501 (2007)

    Article  ADS  Google Scholar 

  5. E. Grimoldi, S. Zanini, R.A. Siliprandi, C. Riccardi, Eur. Phys. J. D 54, 165 (2009)

    Article  ADS  Google Scholar 

  6. V. Milosavljević, V. Žigman, S. Djeniže, Spectrochim. Acta Part B: At. Spectrosc. 59, 1423 (2004)

    Article  ADS  Google Scholar 

  7. V. Milosavljević, A.R. Ellingboe, S. Djeniže, Spectrochim. Acta Part B: At. Spectrosc. 61, 81 (2006)

    Article  ADS  Google Scholar 

  8. J.W. Coburn, M. Chen, J. Appl. Phys. 51, 3134 (1980)

    Article  ADS  Google Scholar 

  9. R.E. Walkup, K.L. Saenger, G.S. Selwyn, J. Chem. Phys. 84, 2668 (1986)

    Article  ADS  Google Scholar 

  10. S. De Benedictis, A. Gicquel, F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, edited by K. Akashi, A. Kinbara (Tokyo, 1987)

  11. P. Macko, P. Veis, G. Cernogora, Plasma Source. Sci. Technol. 13, 251 (2004)

    Article  ADS  Google Scholar 

  12. T. Czerwiec, F. Greer, D.B. Graves, J. Phys. D 38, 4278 (2005)

    Article  ADS  Google Scholar 

  13. NIST – Atomic Spectra Data Base Lines (wavelength order) (2011), http://physics.nist.gov

  14. M. Lieberman, A. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)

  15. S. Fujimura, K. Shinagawa, M. Nakamura, H. Yano, Jpn J. Appl. Phys. 29, 2165 (1990)

    Article  ADS  Google Scholar 

  16. A. Granier, D. Chéreau, K. Henda, R. Safari, P. Leprince, J. Appl. Phys. 75, 104 (1994)

    Article  ADS  Google Scholar 

  17. V. Milosavljević, PRL Internal report, Dublin City University, Dublin, 2004

  18. V. Milosavljević, R. Faulkner, M.B. Hopkins, Optics Express 15, 13913 (2007)

    Article  ADS  Google Scholar 

  19. D. Popović, V. Milosavljević, S. Daniels, J. Appl. Phys. 102, 103303 (2007)

    Article  ADS  Google Scholar 

  20. H. Nagai, M. Hiramatsu, M. Hori, T. Goto, Rev. Sci. Instrum. 74, 3453 (2003)

    Article  ADS  Google Scholar 

  21. V. Milosavljević, A.R. Ellingboe, C. Gaman, J. Appl. Phys. 103, 083302 (2008)

    Article  ADS  Google Scholar 

  22. S.K. Karkari, A.R. Ellingboe, C. Gaman, Appl. Phys. Lett. 93, 071501 (2008)

    Article  ADS  Google Scholar 

  23. J. Robiche, P.C. Boyle, M.M. Turner, A.R. Ellingboe, J. Phys. D 36, 1810 (2003)

    Article  ADS  Google Scholar 

  24. S.K. Karkari, A.R. Ellingboe, Appl. Phys. Lett. 88, 101501 (2006)

    Article  ADS  Google Scholar 

  25. P.C. Boyle, A.R. Ellingboe, M.M. Turner, J. Phys. D 37, 697 (2004)

    Article  ADS  Google Scholar 

  26. J. Schulze , T. Gans , D. O’Connell , U. Czarnetzki, A.R. Ellingboe, M.M. Turner, J. Phys. D 40, 7008 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ellingboe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milosavljević, V., Ellingboe, A.R. & Daniels, S. Influence of plasma chemistry on oxygen triplets. Eur. Phys. J. D 64, 437–445 (2011). https://doi.org/10.1140/epjd/e2011-20213-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20213-2

Keywords

Navigation