Skip to main content
Log in

Charged Higgs boson production in association with a top quark in MC@NLO

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We discuss the calculation of charged Higgs boson production in association with a top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model-independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and we present example results for the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  2. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  4. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  5. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)

    Article  ADS  Google Scholar 

  6. A. Djouadi, The anatomy of electro-weak symmetry breaking. II: The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1–241 (2008). arXiv:hep-ph/0503173

    Article  ADS  Google Scholar 

  7. M. Misiak et al., The first estimate of BR(BX s γ) at \(O(\alpha_{s}^{2})\). Phys. Rev. Lett. 98, 022002 (2007). arXiv:hep-ph/0609232

    Article  ADS  Google Scholar 

  8. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  9. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. J. High Energy Phys. 03, 092 (2006). arXiv:hep-ph/0512250

    Article  ADS  Google Scholar 

  10. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys. 07, 029 (2008). arXiv:0805.3067

    Article  ADS  Google Scholar 

  11. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. J. High Energy Phys. 04, 081 (2007). arXiv:hep-ph/0702198

    Article  ADS  Google Scholar 

  12. P. Motylinski, Angular correlations in t-channel single top production at the LHC. Phys. Rev. D 80, 074015 (2009). arXiv:0905.4754

    Article  ADS  Google Scholar 

  13. S.-H. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider. Phys. Rev. D 67, 075006 (2003). arXiv:hep-ph/0112109

    Article  ADS  Google Scholar 

  14. T. Plehn, Charged Higgs boson production in bottom gluon fusion. Phys. Rev. D 67, 014018 (2003). arXiv:hep-ph/0206121

    Article  ADS  Google Scholar 

  15. S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. arXiv:0907.4076

  16. J. Alwall, J. Rathsman, Improved description of charged Higgs boson production at hadron colliders. J. High Energy Phys. 12, 050 (2004). arXiv:hep-ph/0409094

    Article  ADS  Google Scholar 

  17. S. Catani, M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997). arXiv:hep-ph/9605323

    Article  ADS  Google Scholar 

  18. S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, The dipole formalism for next-to-leading order QCD calculations with massive partons. Nucl. Phys. B 627, 189–265 (2002). arXiv:hep-ph/0201036

    Article  MATH  ADS  Google Scholar 

  19. S. Frixione, Z. Kunszt, A. Signer, Three-jet cross sections to next-to-leading order. Nucl. Phys. B 467, 399–442 (1996). arXiv:hep-ph/9512328

    Article  ADS  Google Scholar 

  20. S. Frixione, A general approach to jet cross sections in QCD. Nucl. Phys. B 507, 295–314 (1997). arXiv:hep-ph/9706545

    Article  ADS  Google Scholar 

  21. M.A.G. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies. Phys. Rev. D 50, 3102–3118 (1994). arXiv:hep-ph/9312319

    Article  ADS  Google Scholar 

  22. S. Dittmaier, M. Kramer, M. Spira, M. Walser, Charged–Higgs–boson production at the LHC: NLO supersymmetric QCD corrections. arXiv:0906.2648

  23. E.L. Berger, T. Han, J. Jiang, T. Plehn, Associated production of a top quark and a charged Higgs boson. Phys. Rev. D 71, 115012 (2005). arXiv:hep-ph/0312286

    Article  ADS  Google Scholar 

  24. J.C. Collins, F. Wilczek, A. Zee, Low-energy manifestations of heavy particles: application to the neutral current. Phys. Rev. D 18, 242 (1978)

    Article  ADS  Google Scholar 

  25. J.A.M. Vermaseren, New features of FORM, arXiv:math-ph/0010025

  26. W. Beenakker, R. Hopker, M. Spira, PROSPINO: A program for the production of supersymmetric particles in next-to-leading order QCD. arXiv:hep-ph/9611232

  27. Version 2.1 available from: http://www.thphys.uni-heidelberg.de/plehn/prospino/

  28. S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production. J. High Energy Phys. 08, 007 (2003). arXiv:hep-ph/0305252

    Article  ADS  Google Scholar 

  29. S. Frixione, S. Latunde-Dada, F. Stoeckli, P. Torrielli, B.R. Webber, In preparation

  30. O. Latunde-Dada, MC@NLO for the hadronic decay of Higgs bosons in associated production with vector bosons. J. High Energy Phys. 05, 112 (2009). arXiv:0903.4135

    Article  ADS  Google Scholar 

  31. A. Papaefstathiou, O. Latunde-Dada, NLO production of W′ bosons at hadron colliders using the MC@NLO and POWHEG methods. J. High Energy Phys. 07, 044 (2009). arXiv:0901.3685

    Article  ADS  Google Scholar 

  32. O. Latunde-Dada, Herwig Monte Carlo at next-to-leading order for e + e annihilation and lepton pair production. J. High Energy Phys. 11, 040 (2007). arXiv:0708.4390

    Article  ADS  Google Scholar 

  33. P. Torrielli, S. Frixione, In preparation

  34. A.S. Belyaev, E.E. Boos, L.V. Dudko, Single top quark at future hadron colliders: Complete signal and background study. Phys. Rev. D 59, 075001 (1999). arXiv:hep-ph/9806332

    Article  ADS  Google Scholar 

  35. T.M.P. Tait, The tW mode of single top production. Phys. Rev. D 61, 034001 (2000). arXiv:hep-ph/9909352

    Article  ADS  Google Scholar 

  36. J.M. Campbell, F. Tramontano, Next-to-leading order corrections to Wt production and decay. Nucl. Phys. B 726, 109–130 (2005). arXiv:hep-ph/0506289

    Article  MATH  ADS  Google Scholar 

  37. S. Zhu, Next-to-leading order QCD corrections to bgtW-at the CERN large hadron collider. Phys. Lett. B 524, 283–288 (2002)

    Article  ADS  Google Scholar 

  38. C.D. White, S. Frixione, E. Laenen, F. Maltoni, Isolating Wt production at the LHC. J. High Energy Phys. 11, 074 (2009). arXiv:0908.0631

    Article  ADS  Google Scholar 

  39. J. Alwall et al., MadGraph/MadEvent v4: the new Web generation. J. High Energy Phys. 09, 028 (2007). arXiv:0706.2334

    Article  ADS  Google Scholar 

  40. F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 02, 027 (2003). arXiv:hep-ph/0208156

    Article  ADS  Google Scholar 

  41. H.L. Lai et al. (CTEQ Collaboration), Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions. Eur. Phys. J. C 12, 375–392 (2000). arXiv:hep-ph/9903282

    Article  ADS  Google Scholar 

  42. W.K. Tung et al., Heavy quark mass effects in deep inelastic scattering and global QCD analysis. J. High Energy Phys. 02, 053 (2007). arXiv:hep-ph/0611254

    Article  ADS  Google Scholar 

  43. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002

    Article  ADS  Google Scholar 

  44. J.F. Gunion, Detecting the tb decays of a charged Higgs boson at a hadron supercollider. Phys. Lett. B 322, 125–130 (1994). arXiv:hep-ph/9312201

    Article  ADS  Google Scholar 

  45. J.L. Diaz-Cruz, O.A. Sampayo, Contribution of gluon fusion to the production of charged Higgs at hadron colliders. Phys. Rev. D 50, 6820–6823 (1994)

    Article  ADS  Google Scholar 

  46. R.M. Barnett, H.E. Haber, D.E. Soper, Ultraheavy particle production from heavy partons at hadron colliders. Nucl. Phys. B 306, 697 (1988)

    Article  ADS  Google Scholar 

  47. A.C. Bawa, C.S. Kim, A.D. Martin, Charged Higgs production at hadron colliders. Z. Phys. C 47, 75–82 (1990)

    Article  Google Scholar 

  48. V.D. Barger, R.J.N. Phillips, D.P. Roy, Heavy charged Higgs signals at the LHC. Phys. Lett. B 324, 236–240 (1994). arXiv:hep-ph/9311372

    Article  ADS  Google Scholar 

  49. T. Plehn, D. Rainwater, P. Skands, Squark and gluino production with jets. Phys. Lett. B 645, 217–221 (2007). arXiv:hep-ph/0510144

    Article  ADS  Google Scholar 

  50. T. Plehn, T.M.P. Tait, Seeking Sgluons. J. Phys. G 36, 075001 (2009). arXiv:0810.3919

    Article  ADS  Google Scholar 

  51. J. Alwall, S. de Visscher, F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC. J. High Energy Phys. 02, 017 (2009). arXiv:0810.5350

    Article  ADS  Google Scholar 

  52. J.M. Butterworth, B.E. Cox, J.R. Forshaw, WW scattering at the CERN LHC. Phys. Rev. D 65, 096014 (2002). arXiv:hep-ph/0201098

    Article  ADS  Google Scholar 

  53. J. Thaler, L.-T. Wang, Strategies to identify boosted tops. J. High Energy Phys. 07, 092 (2008). arXiv:0806.0023

    Article  ADS  Google Scholar 

  54. D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Top tagging: A method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848

    Article  ADS  Google Scholar 

  55. L.G. Almeida et al., Substructure of high-p T jets at the LHC. Phys. Rev. D 79, 074017 (2009). arXiv:0807.0234

    Article  MathSciNet  ADS  Google Scholar 

  56. T. Plehn, G.P. Salam, M. Spannowsky, Fat jets for a light higgs. arXiv:0910.5472

  57. M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard, C. Verzegnassi, Associated production of charged Higgs and top at LHC: the role of the complete electroweak supersymmetric contribution. Phys. Rev. D 80, 053011 (2009). arXiv:0908.1332

    Article  ADS  Google Scholar 

  58. J.M. Campbell, R.K. Ellis, F. Maltoni, S. Willenbrock, Higgs boson production in association with a single bottom quark. Phys. Rev. D 67, 095002 (2003). arXiv:hep-ph/0204093

    Article  ADS  Google Scholar 

  59. M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weydert, C., Frixione, S., Herquet, M. et al. Charged Higgs boson production in association with a top quark in MC@NLO. Eur. Phys. J. C 67, 617–636 (2010). https://doi.org/10.1140/epjc/s10052-010-1320-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1320-8

Keywords

Navigation