Skip to main content
Log in

The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We revisit the procedure for comparing the π π spectral function measured in τ decays to that obtained in e + e annihilation. We re-examine the isospin-breaking corrections using new experimental and theoretical input and find improved agreement between the τ π π 0 ν τ branching fraction measurement and its prediction using the isospin-breaking-corrected e + e π + π spectral function, though not resolving all discrepancies. We recompute the lowest order hadronic contributions to the muon g−2 using e + e and τ data with the new corrections and find a reduced difference between the two evaluations. The new tau-based estimate of the muon magnetic anomaly is found to be 1.9 standard deviations lower than the direct measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMD-2 Collaboration (R.R. Akhmetshin et al.), Phys. Lett. B 578, 285 (2004). arXiv:hep-ex/0308008

    ADS  Google Scholar 

  2. CMD-2 Collaboration (V.M. Aulchenko et al.), JETP Lett. 82, 743 (2005). arXiv:hep-ex/0603021

    Article  ADS  Google Scholar 

  3. CMD-2 Collaboration (R.R. Akhmetshin et al.), JETP Lett. 84, 413 (2006). arXiv:hep-ex/0610016

    Article  ADS  Google Scholar 

  4. CMD-2 Collaboration (R.R. Akhmetshin et al.), Phys. Lett. B 648, 28 (2007). arXiv:hep-ex/0610021

    ADS  Google Scholar 

  5. SND Collaboration (M.N. Achasov et al.), JETP Lett. 103, 380 (2006). arXiv:hep-ex/0605013

    Google Scholar 

  6. KLOE Collaboration (F. Ambrosino et al.), Phys. Lett. B 670, 285 (2009). arXiv:0809.3950 (hep-ex)

    ADS  Google Scholar 

  7. R. Alemany, M. Davier, A. Hoecker, Eur. Phys. J. C 2, 123 (1998)

    Article  ADS  Google Scholar 

  8. ALEPH Collaboration (R. Barate et al.), Z. Phys. C 76, 15 (1997)

    Google Scholar 

  9. ALEPH Collaboration (S. Schael et al.), Phys. Rep. 421, 191 (2005)

    Article  ADS  Google Scholar 

  10. CLEO Collaboration (S. Anderson et al.), Phys. Rev. D 61, 112002 (2000)

    ADS  Google Scholar 

  11. OPAL Collaboration (K. Ackerstaff et al.), Eur. Phys. J. C 7, 571 (1999)

    Article  ADS  Google Scholar 

  12. M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003)

    Article  ADS  Google Scholar 

  13. M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003)

    Article  ADS  Google Scholar 

  14. G.W. Bennett et al., Phys. Rev. Lett. 89, 101804 (2002)

    Article  ADS  Google Scholar 

  15. M. Davier, Nucl. Phys. Proc. Suppl. 169, 288 (2007)

    Article  ADS  Google Scholar 

  16. Belle Collaboration (M. Fujikawa et al.), Phys. Rev. D 78, 072006 (2008)

    ADS  Google Scholar 

  17. H. Hayashii, Private communication

  18. L3 Collaboration (M. Acciarri et al.), Phys. Lett. B 345, 93 (1995)

    ADS  Google Scholar 

  19. DELPHI Collaboration (J. Abdallah et al.), Eur. Phys. J. C 46, 1 (2006)

    ADS  Google Scholar 

  20. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008)

    ADS  Google Scholar 

  21. Y.S. Tsai, Phys. Rev. D 4, 2821 (1971). Erratum-ibid. D 13, 771 (1976)

    Article  ADS  Google Scholar 

  22. H.B. Thacker, J.J. Sakurai, Phys. Lett. 36, 103 (1971)

    Article  Google Scholar 

  23. CKMfitter Group (J. Charles et al.), Eur. Phys. J. C 41, 1 (2005). Updates from http://ckmfitter.in2p3.fr

    Article  ADS  Google Scholar 

  24. M. Davier, A. Hoecker, Z. Zhang, Rev. Mod. Phys. 78, 1043 (2006)

    Article  ADS  Google Scholar 

  25. A. Sirlin, Rev. Mod. Phys. 50, 573 (1978). Erratum-ibid. 50, 905 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  26. W. Marciano, A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988)

    Article  ADS  Google Scholar 

  27. A. Sirlin, Nucl. Phys. B 196, 83 (1982)

    Article  ADS  Google Scholar 

  28. E. Braaten, C.S. Li, Phys. Rev. D 42, 3888 (1990)

    Article  ADS  Google Scholar 

  29. J. Erler, Rev. Mex. Fis. 50, 200 (2004)

    Google Scholar 

  30. J.S. Schwinger, Particles, Sources and Fields, vol. 3 (Addison-Wesley, Reading, 1989). See also, M. Drees, K. Hikasa, Phys. Lett. B 252, 127 (1990)

    Google Scholar 

  31. V. Cirigliano, G. Ecker, H. Neufeld, Phys. Lett. B 513, 361 (2001)

    ADS  Google Scholar 

  32. V. Cirigliano, G. Ecker, H. Neufeld, JHEP 0208, 002 (2002)

    Article  ADS  Google Scholar 

  33. J. Portoles, Nucl. Phys. Proc. Suppl. 169, 3 (2007)

    Article  ADS  Google Scholar 

  34. J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Witten, Nucl. Phys. B 223, 422 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Flores-Tlalpa, F. Flores-Baez, G. Lopez Castro, G. Toledo Sanchez, Phys. Rev. D 74, 071301 (2006)

    ADS  Google Scholar 

  37. A. Flores-Tlalpa, F. Flores-Baez, G. Lopez Castro, G. Toledo Sanchez, Nucl. Phys. Proc. Suppl. 169, 250 (2007)

    Article  ADS  Google Scholar 

  38. T. Kinoshita, A. Sirlin, Phys. Rev. 113, 1652 (1959)

    Article  ADS  Google Scholar 

  39. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

    Article  ADS  Google Scholar 

  40. J.H. Kühn, A. Santamaria, Z. Phys. C 48, 445 (1990)

    Article  Google Scholar 

  41. K. Maltman, C.E. Wolfe, Phys. Rev. D 73, 013004 (2006)

    Article  ADS  Google Scholar 

  42. M. Benayoun et al., Eur. Phys. J. C 55, 199 (2008)

    Article  ADS  Google Scholar 

  43. F. Guerrero, A. Pich, Phys. Lett. B 412, 382 (1997)

    Article  ADS  Google Scholar 

  44. F. Flores-Baez, G. Lopez Castro, G. Toledo Sanchez, Phys. Rev. D 76, 096010 (2007)

    Article  ADS  Google Scholar 

  45. J.J. Sakurai, Currents and Mesons (The University of Chicago Press, Chicago, 1969)

    Google Scholar 

  46. KLOE Collaboration (A. Aloisio et al.), Phys. Lett. B 561, 55 (2003)

    ADS  Google Scholar 

  47. S.J. Brodsky, E. de Rafael, Phys. Rev. 168, 1620 (1968)

    Article  ADS  Google Scholar 

  48. F. Flores-Baez, G. López Castro, Phys. Rev. D 78, 077301 (2008)

    ADS  Google Scholar 

  49. S. Dubinsky, A. Korchin, N. Merenkov, G. Pancheri, O. Shekhovtsova, Eur. Phys. J. C 40, 41 (2005). arXiv:hep-ph/0411113

    Article  ADS  Google Scholar 

  50. NA7 Collaboration (S.R. Amendolia et al.), Nucl. Phys. B 277, 168 (1986)

    Article  ADS  Google Scholar 

  51. J. Prades, E. de Rafael, A. Vainshtein, arXiv:0901.0306 (hep-ph)

  52. Muon g-2 Collaboration (G.W. Bennett et al.), Phys. Rev. D 73, 072003 (2006)

    ADS  Google Scholar 

  53. A. Hoecker, W. Marciano, The muon anomalous magnetic moment, in Review of Particle Physics 2008. Update for 2009 in preparation (to appear at http://pdglive.lbl.gov)

  54. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007)

    ADS  Google Scholar 

  55. F. Jegerlehner, Acta Phys. Polon. B 38, 3021 (2007). arXiv:hep-ph/0703125

    ADS  Google Scholar 

  56. F. Jegerlehner, Nucl. Phys. Proc. Suppl. 181–182, 26 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davier, M., Hoecker, A., López Castro, G. et al. The discrepancy between τ and e + e spectral functions revisited and the consequences for the muon magnetic anomaly. Eur. Phys. J. C 66, 127–136 (2010). https://doi.org/10.1140/epjc/s10052-009-1219-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1219-4

Keywords

Navigation