Skip to main content
Log in

First principle calculation of accurate native defect levels in CaF2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on the first principle density functional calculation of the charge transition levels of native defects (vacancies and interstitials) in CaF2 structure. The transition level was defined as the Fermi level where two charge states of given defect have the same formation energy. The common error in the band gap inherited to semiclocal density functional has been accounted for by incorporating the hybrid density functional method, leading to correct placement of the transition levels within the band gap. The band gap size from hybrid calculation has been validated using the full potential, Linearized Augmented Planewave method with the Modified-Becke-Johnson exchange potential. Prior to level calculations, we ensured that an agreement between the formation energies from small (95–97 atoms) and large (323–325 atoms) supercells was achieved after applying the Makov-Payne correction method. Our calculated transition level for the anion vacancy was 2.97 eV below the conduction band, agreeing with the experimental optical absorption band at 3.3 eV associated with the electron transition from the ground state F-center to the conduction band in CaF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Puchina et al., Solid State Commun. 106, 285 (1998)

    Article  ADS  Google Scholar 

  2. M. Verstraete, X. Gonze, Phys. Rev. B 68, 195123 (2003)

    Article  ADS  Google Scholar 

  3. G.W. Rubloff, Phys. Rev. B 5, 662 (1972)

    Article  ADS  Google Scholar 

  4. K. Sun et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015)

    ADS  Google Scholar 

  5. L. Dressler, R. Rauch, R. Reimann, Crystal Res. Technol. 27, 413 (1992)

    Article  Google Scholar 

  6. Y. Shimizu et al., Phys. Lett. B 633, 195 (2006)

    Article  ADS  Google Scholar 

  7. H. Shi, R. Jia, R. Eglitis, Comput. Mater. Sci. 89, 247 (2014)

    Article  Google Scholar 

  8. H. Shi et al., J. Phys. Chem. C 116, 4832 (2012)

    Article  Google Scholar 

  9. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  10. A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Rev. Lett. 101, 046405 (2008)

    Article  ADS  Google Scholar 

  11. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)

    Article  ADS  Google Scholar 

  12. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  13. P. Blaha et al., Wien2k. An augmented plane wave + local orbitals program for calculating crystal properties, 2001

  14. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  15. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  16. C. Freysoldt et al., Rev. Mod. Phys. 86, 253 (2014)

    Article  ADS  Google Scholar 

  17. M. Leslie, N. Gillan, J. Phys. C 18, 973 (1985)

    Article  ADS  Google Scholar 

  18. G. Makov, M. Payne, Phys. Rev. B 51, 4014 (1995)

    Article  ADS  Google Scholar 

  19. C. Castleton, A. Höglund, S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009)

    Article  ADS  Google Scholar 

  20. D.A. Drabold, S.K. Estreicher, Theory of defects in semiconductors (Springer, 2007)

  21. C. Gaire et al., Nanotechnology 21, 445701 (2010)

    Article  ADS  Google Scholar 

  22. J.R. Reimers, Computational methods for large systems: electronic structure approaches for biotechnology and nanotechnology (John Wiley & Sons, 2011)

  23. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  24. A. Tressaud, Functionalized inorganic fluorides: synthesis, characterization and properties of nanostructured solids (John Wiley & Sons, 2010)

  25. P.W.O. Nyawere et al., Solid State Commun. 179, 25 (2014)

    Article  ADS  Google Scholar 

  26. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  27. M. Topsakal, R. Wentzcovitch, Comput. Mater. Sci. 95, 263 (2014)

    Article  Google Scholar 

  28. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)

    Article  ADS  Google Scholar 

  29. A. Seidl et al., Phys. Rev. B 53, 3764 (1996)

    Article  ADS  Google Scholar 

  30. S. Lany, A. Zunger, Phys. Rev. B 78, 235104 (2008)

    Article  ADS  Google Scholar 

  31. H. Shi, R. Eglitis, G. Borstel, Phys. Rev. B 72, 045109 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A.H. Khalafalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibraheem, A.M., Khalafalla, M.A. & Eisa, M.H. First principle calculation of accurate native defect levels in CaF2 . Eur. Phys. J. B 90, 42 (2017). https://doi.org/10.1140/epjb/e2017-70591-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70591-0

Keywords

Navigation