Skip to main content
Log in

Analytical approximations to the dynamics of an array of coupled DC SQUIDs

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Coupled dynamical systems that operate near the onset of a bifurcation can lead, under certain conditions, to strong signal amplification effects. Over the past years we have studied this generic feature on a wide range of systems, including: magnetic and electric fields sensors, gyroscopic devices, and arrays of loops of superconducting quantum interference devices, also known as SQUIDs. In this work, we consider an array of SQUID loops connected in series as a case study to derive asymptotic analytical approximations to the exact solutions through perturbation analysis. Two approaches are considered. First, a straightforward expansion in which the non-linear parameter related to the inductance of the DC SQUID is treated as the small perturbation parameter. Second, a more accurate procedure that considers the SQUID phase dynamics as non-uniform motion on a circle. This second procedure is readily extended to the series array and it could serve as a mathematical framework to find approximate solutions to related complex systems with high-dimensionality. To the best of our knowledge, an approximate analytical solutions to an array of SQUIDs has not been reported yet in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.J. Poole, Handbook of Superconductivity (Academic Press, 2000)

  2. J. Clarke, Scientific American 271, 46 (1994)

    Article  Google Scholar 

  3. D.V. Delft, P. Kes, J. Overweg, J. Zaanen, in 100 Years of Superconductivity, Leiden, 8 April 2011

  4. R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Proc. IEEE 92, 1534 (2004)

    Article  Google Scholar 

  5. R.C. Jaklevic, J. Lambe, A.H. Silver, J.E. Mercereau, Phys. Rev. Lett. 12, 159 (1964)

    Article  ADS  Google Scholar 

  6. F. London, Superfluids (Wiley, New York, 1950)

  7. B. Deaver Jr., W. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  8. R. Doll, M. Näbauer, Phys. Rev. Lett. 7, 51 (1961)

    Article  ADS  Google Scholar 

  9. 100 Years of Superconductivity, edited by H. Rogalla, P. Kes (CRC Press, 2012)

  10. R.L. Fagaly, Rev. Sci. Instrum. 77, 101101 (2006)

    Article  ADS  Google Scholar 

  11. L.E. Fong, J.R. Holzer, K.K. McBride, E.A. Lima, F. Baudenbacher, M. Radparvar, Rev. Sci. Instrum. 76, 053703 (2005)

    Article  ADS  Google Scholar 

  12. O. Hahneiser, S. Kohlsmann, M. Hetscher, K.D. Kramer, Bioelectrochemistry and Bioenergetics 37, 51 (1995)

    Article  Google Scholar 

  13. Y. Machitani, N. Kasai, Y. Fujinawa, H. Iitaka, N. Shirai, Y. Hatsukade, K. Nomura, K. Sugiura, A. Ishiyama, T. Nemoto, IEEE Trans. Appl. Supercond. 13, 763 (2003)

    Article  Google Scholar 

  14. P. Schmidt, D. Clark, K.E. Leslie, M. Bick, D.L. Tilbrook, C.P. Foley, Exploration Geophysics 35, 297 (2004)

    Article  Google Scholar 

  15. A. Chwala, R. Stolz, R. IJsselsteijn, F. Bauer, V. Zakosarenko, U. Hubner, H. Meyer, M. Meyer, SEG Technical Program Expanded Abstracts 29, 779 (2010)

    Article  Google Scholar 

  16. M. Espy, S. Baguisa, D. Dunkerley, P. Magnelind, A. Matlashov, T. Owens, H. Sandin, I. Savukov, L. Schultz, A. Urbaitis, P. Volegov, IEEE Trans. Appl. Supercond. 21, 530 (2011)

    Article  ADS  Google Scholar 

  17. R. Bradley, J. Clarke, D. Kinion, L. Rosenberg, K. van Bibber, S. Matsuki, M. Mueck, P. Sikivie, Rev. Mod. Phys. 75, 777 (2003)

    Article  ADS  Google Scholar 

  18. D.G. Aronson, M. Golubitsky, M. Krupa, Nonlinearity 4, 861 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. Inchiosa, A. Bulsara, K. Wiesenfeld, L. Gammaitoni, Phys. Lett. A 252, 20 (1999)

    Article  ADS  Google Scholar 

  20. M. Inchiosa, V. In, A. Bulsara, K. Wiesenfeld, T. Heath, M. Choi, Phys. Rev. E 63, 1 (2001)

    Article  Google Scholar 

  21. A. Bulsara, A.K.V. In, P. Longhini, A. Palacios, W. Rappel, J. Acebron, S. Baglio, B. Ando, Phys. Rev. E 70, 036103 (2004)

    Article  ADS  Google Scholar 

  22. A. Palacios, J. Aven, P. Longhini, V. In, A. Bulsara, Phys. Rev. E 74, 021122 (2006)

    Article  ADS  Google Scholar 

  23. K. Stawiasz, M. Ketchen, IEEE Trans. Appl. Supercond. 3, 1808 (1993)

    Article  Google Scholar 

  24. J. Oppenländer, Ch. Häussler, N. Schopohl, Phys. Rev. B 63, 024511 (2000)

    Article  Google Scholar 

  25. C. Häussler, J. Oppenländer, N. Schopohl, J. Appl. Phys. 89, 1875 (2001)

    Article  Google Scholar 

  26. T. Träuble, J. Oppenländer, C. Häussler, N. Schopohl, Physica C 368, 119 (2002)

    Article  Google Scholar 

  27. J. Oppenländer, C. Häussler, T. Träuble, P. Caputo, J. Tomes, A. Friesch, N. Schopohl, IEEE Trans. Appl. Supercond. 13, 771 (2003)

    Article  Google Scholar 

  28. J. Oppenländer, T. Träuble, C. Häussler, N. Schopohl, IEEE Trans. Appl. Supercond. 11, 1271 (2001)

    Article  Google Scholar 

  29. J. Oppenländer, C. Häussler, A. Friesch, J. Tomes, P. Caputo, T. Träuble, N. Schopohl, IEEE Trans. Appl. Supercond. 15, 936 (2005)

    Article  Google Scholar 

  30. V.K. Kornev, I.I. Soloviev, N.V. Klenov, O.A. Mukhanov, IEEE Trans. Appl. Supercond. 19, 741 (2009)

    Article  ADS  Google Scholar 

  31. V.K. Kornev, I.I. Soloviev, J. Oppenländer, C. Häussler, N. Schopohl, Supercond. Sci. Technol. 17, S406 (2004)

    Article  ADS  Google Scholar 

  32. V. Schultze, R. IJsselsteijn, H.G. Meyer, J. Oppenländer, C. Häussler, N. Schopohl, IEEE Trans. Appl. Supercond. 13, 775 (2003)

    Article  Google Scholar 

  33. V. Schultze, R. IJsselsteijn, H.G. Meyer, Supercond. Sci. Technol. 19, S411 (2006)

    Article  ADS  Google Scholar 

  34. J. Oppenländer, P. Caputo, C. Häussler, T. Träuble, J. Tomes, A. Friesch, N. Schopohl, Appl. Phys. Lett. 83, 969 (2003)

    Article  ADS  Google Scholar 

  35. P. Caputo, J. Oppenländer, C. Häussler, J. Tomes, A. Friesch, T. Träuble, N. Schopohl, Appl. Phys. Lett. 85, 1389 (2004)

    Article  ADS  Google Scholar 

  36. P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch, T. Träuble, N. Schopohl, IEEE Trans. Appl. Supercond. 15, 1044 (2005)

    Article  Google Scholar 

  37. Y. Polyakov, V. Semenov, S. Tolpygo, IEEE Trans. Appl. Supercond. 21, 724 (2011)

    Article  ADS  Google Scholar 

  38. P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch, T. Träuble, N. Schopohl, IEEE Trans. Appl. Supercond. 17, 722 (2006)

    Article  ADS  Google Scholar 

  39. V.K. Kornev, I.I. Soloviev, N.V. Klenov, T. Filippov, H. Engseth, O.A. Mukhanov, IEEE Trans. Appl. Supercond. 19, 916 (2009)

    Article  ADS  Google Scholar 

  40. V.K. Kornev, I.I. Soloviev, N.V. Klenov, A.V. Sharafiev, O.A. Mukhanov, IEEE Trans. Appl. Supercond. 21, 713 (2011)

    Article  ADS  Google Scholar 

  41. P. Caputo, J. Tomes, J. Oppenländer, C. Häussler, A. Friesch, T. Träuble, N. Schopohl, Appl. Phys. Lett. 89, 062507 (2006)

    Article  ADS  Google Scholar 

  42. P. Caputo, J. Tomes, J. Oppenländer, Ch. Häussler, A. Friesch, T. Träuble, N. Schopohl, J. Supercond. Novel Magn. 20, 25 (2007)

    Article  Google Scholar 

  43. A. Shadrin, K. Constantinian, G. Ovsyannikov, Tech. Phys. Lett. 33, 192 (2007)

    Article  ADS  Google Scholar 

  44. A.K. Kalabukhov, M.L. Chukharkin, A.A. Deleniv, D. Winkler, I.A. Volkov, O.V. Snigirev, J. Commun. Technol. Electron. 53, 934 (2008)

    Article  Google Scholar 

  45. V.K. Kornev, I.I. Soloviev, N.V. Klenov, A.V. Sharafiev, O.A. Mukhanov, Physica C 479, 119 (2012)

    Article  ADS  Google Scholar 

  46. K. Wiesenfeld, A. Bulsara, M. Inchiosa, Phys. Rev. B 62, R9232 (2000)

    Article  ADS  Google Scholar 

  47. M. Mück, R. McDermott, Supercond. Sci. Technol. 23, 093001 (2010)

    Article  ADS  Google Scholar 

  48. C. Hilbert, J. Clarke, J. Low Temp. Phys. 61, 263 (1985)

    Article  ADS  Google Scholar 

  49. M. Cyrille, Thin Solid Films 333, 228 (1998)

    Article  ADS  Google Scholar 

  50. O. Snigirev, M. Chukharkin, A. Kalabukhov, M. Tarasov, A.A. Deleniv, O.A. Mukhanov, D. Winkler, IEEE Trans. Appl. Supercond. 17, 718 (2007)

    Article  ADS  Google Scholar 

  51. V.K. Kornev, I.I. Soloviev, N.V. Klenov, O.A. Mukhanov, IEEE Trans. Appl. Supercond. 17, 569 (2007)

    Article  ADS  Google Scholar 

  52. J. Luine, L. Abelson, D. Brundrett, J. Burch, E. Dantsker, K. Hummer, G. Kerber, M. Wire, K. Yokoyama, D. Bowling, M. Neel, S. Hubbell, K. Li, IEEE Trans. Appl. Supercond. 9, 4141 (1999)

    Article  Google Scholar 

  53. A.M.L. Martin, D.R. Bowling, M.M. Neel, Naval Eng. J. 110, 123 (1998)

    Article  Google Scholar 

  54. S.K. Khamas, M.J. Mehler, T.S.M. Maclean, C.E. Gough, Electron. Lett. 24, 460 (1988)

    Article  ADS  Google Scholar 

  55. K. Sakuta, Y. Narita, H. Itozaki, Supercond. Sci. Technol. 20, S389 (2007)

    Article  ADS  Google Scholar 

  56. T. Lanting, M. Dobbs, H. Spieler, A.T. Lee, Y. Yamamoto, arXiv:0901.1919 [astro-ph.IM] (2009)

  57. J. Beyer, D. Drung, Supercond. Sci. Technol. 21, 095012 (2008)

    Article  ADS  Google Scholar 

  58. R. De Luca, A. Fedullo, V. Gasanenko, Eur. Phys. J. B 58, 461 (2007)

    Article  ADS  Google Scholar 

  59. S. Yukon, DTIC Online (2010), pp. 1–25

  60. F. Romeo, R.D. Luca, Phys. Lett. A 328, 330 (2004)

    Article  ADS  Google Scholar 

  61. N. Grønbech-Jensen, C. Cosmeli, D. Thompson, M. Cirillo, Phys. Rev. B 67, 224505 (2003)

    Article  ADS  Google Scholar 

  62. K. Tsang, R. Mirollo, S. Strogatz, K. Wiesenfeld, Physica D 48, 102 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. M. Bennett, K. Wiesenfeld, Physica D 192, 196 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. K. Wiesenfeld, J. Swift, Phys. Rev. E 51, 1020 (1995)

    Article  ADS  Google Scholar 

  65. S. Watanabe, S. Strogatz, Physica D 74, 197 (1994)

    Article  ADS  MATH  Google Scholar 

  66. J. Swift, S. Strogatz, K. Wiesenfeld, Physica D 55, 239 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. S. Watanabe, J. Swift, J. Nonlinear Sci. 7, 503 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  68. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (J. Wiley, New York, 1982)

  69. A. Bulsara, J. Acebron, W. Rappel, A. Hibbs, L. Kunstmanas, M. Krupka, Physica A 325, 220 (2003)

    Article  ADS  Google Scholar 

  70. J.L. Aven, Networks of coupled SQUID magnetometers, Master’s thesis, San Diego State University, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Berggren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berggren, S., Palacios, A. Analytical approximations to the dynamics of an array of coupled DC SQUIDs. Eur. Phys. J. B 87, 83 (2014). https://doi.org/10.1140/epjb/e2014-50065-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50065-9

Keywords

Navigation