Skip to main content
Log in

Influence of assortativity and degree-preserving rewiring on the spectra of networks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Newman’s measure for (dis)assortativity, the linear degree correlation coefficient \(\rho _{D}\), is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases \(\rho _{D}\) conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue \(\lambda _{1}\) of the adjacency matrix and the algebraic connectivity \(\mu _{N-1}\) (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue \(\lambda _{1}\) of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for \(\lambda _{1}\) increase with \(\rho _{D}\). A new upper bound for the algebraic connectivity \(\mu _{N-1}\) decreases with \(\rho _{D}\). Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases \(\lambda _{1}\), but decreases \(\mu _{N-1}\), even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases \(\lambda _{1}\), but increases the algebraic connectivity, at least in the initial rewirings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Berg, M. Lässig, Phys. Rev. Lett. 89, 228701 (2002)

    Article  ADS  Google Scholar 

  3. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  4. L. Li, D. Alderson, J.C. Doyle, W. Willinger, Internet Mathematics, 2, 431 (2005)

  5. J. Zhao, L. Tao, H. Yu, J. Luo, Z. Cao, Y. Li, Chinese Phys. 16, 3571 (2007)

    Article  ADS  Google Scholar 

  6. M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003)

    Article  ADS  Google Scholar 

  7. J.D. Noh, Phys. Rev. E 76, 026116 (2007)

    Article  ADS  Google Scholar 

  8. M. Piraveenan, M. Prokopenko, A.Y. Zomaya, Europhys. Lett. (EPL) 84, 28002 (2008)

    Article  ADS  Google Scholar 

  9. P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press (Cambridge, U.K., to appear 2010)

  10. M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 66, 047104 (2002)

    Article  ADS  Google Scholar 

  11. P. Van Mieghem, J. Omic, R.E. Kooij, IEEE/ACM Transactions on Networking 17, 1 (2009)

    Article  Google Scholar 

  12. J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. E 71, 036151 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Van Mieghem, Performance Analysis of Communications Systems and Networks (Cambridge University Press, Cambridge, U.K., 2006)

  14. M.A. Fiol, E. Garriga, Disc. Math. 309, 2613 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Z. Nikoloski, N. Deo, L. Kucera, Discrete Mathematics and Theoretical Computer Science (DMTCS), proc. AE, EuroComb 2005 (2005), pp. 239–244

  16. M. Fiedler, Czech. Math. J. 23, 298 (1973)

    MathSciNet  Google Scholar 

  17. J.G. Restrepo, E. Ott, B.R. Hunt, Phys. Rev. E 76, 056119 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Bienstock, O. Günlük, Networks 24, 195 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Zhou, R.J. Mondragón, New J. Phys. 9, 173 (2007)

    Article  ADS  Google Scholar 

  20. Y. Shiloach, Inf. Process. Lett. 12, 89 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. H.N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems, Proc. of the 15th Annual ACM Symposium on the Theory of Computing, 1983, pp. 448–456

  22. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979)

  23. D. Eppstein, Z. Galil, G.F. Italiano, A. Nissenzweig, Journal of the ACM 44, 669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Mieghem, P., Wang, H., Ge, X. et al. Influence of assortativity and degree-preserving rewiring on the spectra of networks. Eur. Phys. J. B 76, 643–652 (2010). https://doi.org/10.1140/epjb/e2010-00219-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00219-x

Keywords

Navigation