Skip to main content
Log in

Preparation of the 178m2Hf isomer used in the induced gamma decay experiment by X-ray from synchrotron radiation facility

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

It is widely acknowledged that the 178m2Hf nuclide is the most suitable substance to study the decay characteristic of the isomer induced by low-energy X-ray. In order to conduct the experiment on the induced gamma emission, the research group has started producing the 178m2Hf nuclide based on the 176Yb(α, 2n)178m2Hf reaction. After the chemical purification is conducted, the sample is prepared and used in Shanghai Synchrotron Radiation Facility. During the production of isomer, the natural metal Yb target is got through magnetron sputtering. Bombarded by α particles about 27 MeV, the 178m2Hf nuclide reaches about 1012. Yb target prepared in this way is most suitable for the production of 178m2Hf nuclide in the CS30 cyclotron. There are various nuclides in the irradiated target and the main long-lived nuclides are 173Lu, 172Lu, 175Hf, 172Hf and 65Zn. The chemical separation of 178m2Hf is studied and its process is monitored by radioactive tracer. The above result shows that decontamination factors of Zn and Lu are 105 and 103, respectively, and the yield of hafnium is 69%. Under the protection of vacuum filtration technology, the purified 178m2Hf isomers are entirely transferred to the surface of filter paper, in order to form the sample which satisfies requirements of X-ray triggering the 178m2Hf isomer decay experiment in Shanghai Synchrotron Radiation Facility in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.B. Collins et al., Phys. Rev. C 42, 1813 (1990).

    Article  ADS  Google Scholar 

  2. C.B. Collins et al., Phys. Rev. C 37, 2267 (1988).

    Article  ADS  Google Scholar 

  3. S. Olariu, Agata Olariu, Phys. Rev. C 58, 333 (1998).

    Article  ADS  Google Scholar 

  4. C.B. Collins et al., Laser Phys. 9, 8 (1999).

    Google Scholar 

  5. C.B. Collins et al., Phys. Rev. Lett. 83, 695 (1999).

    Article  ADS  Google Scholar 

  6. C.B. Collins et al., Phys. At. Nucl. 63, 2067 (2000).

    Article  Google Scholar 

  7. C.B. Collins, F. Davanloo, A.C. Rusu, M.C. Iosif, N.C. Zoita, D.T. Camase, J.M. Hicks, S.A. Karamian et al., Phys. Rev. C 61, 054305 (2000).

    Article  ADS  Google Scholar 

  8. C.B. Collins et al., Hyperfine Interact. 135, 51 (2001).

    Article  ADS  Google Scholar 

  9. C.B. Collins et al., Radiat. Phys. Chem. 71, 619 (2004).

    Article  ADS  Google Scholar 

  10. C.B. Collins et al., Laser Phys. Lett. 2, 162 (2005).

    Article  ADS  Google Scholar 

  11. C.B. Collins et al., Laser Phys. 14, 154 (2004).

    Google Scholar 

  12. C.B. Collins et al., Europhys. Lett. 57, 677 (2002).

    Article  ADS  Google Scholar 

  13. P. McDaniel et al., Sandia Report SAND2007 2690, 1 (2008).

    Google Scholar 

  14. I. Ahmad et al., Phys. Rev. C 67, 041305 (2003).

    Article  ADS  Google Scholar 

  15. I. Ahmad et al., Phys. Rev. Lett. 87, 072503 (2001).

    Article  ADS  Google Scholar 

  16. J.J. Carroll et al., Hyperfine Interact. 143, 37 (2002).

    Article  ADS  Google Scholar 

  17. H.E. Roberts et al., Hyperfine Interact. 143, 111 (2002).

    Article  ADS  Google Scholar 

  18. Yu.Ts. Oganessian et al., Hyperfine Interact. 107, 129 (1997).

    Article  ADS  Google Scholar 

  19. S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 530, 463 (2004).

    Article  ADS  Google Scholar 

  20. S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 489, 448 (2002).

    Article  ADS  Google Scholar 

  21. S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 530, 609 (2004).

    Article  ADS  Google Scholar 

  22. Obrien HA, Nucl. Instrum. Methods Phys. Res. B 40-41, 1126 (1989).

    Article  ADS  Google Scholar 

  23. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 600, 488 (2009).

    Article  ADS  Google Scholar 

  24. Yu.Ts. Oganessian et al., J. Phys. G 18, 393 (1992).

    Article  ADS  Google Scholar 

  25. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

  26. Nuclear Navigator, Version 3.4, June 2000. Nuclear Navigator was developed for OTEC by Battelle Memorial Institute.

  27. I. Ahmad et al., Phys. Rev. C 71, 024311 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianli Yang.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., TaoJiang, Ze, R. et al. Preparation of the 178m2Hf isomer used in the induced gamma decay experiment by X-ray from synchrotron radiation facility. Eur. Phys. J. A 48, 149 (2012). https://doi.org/10.1140/epja/i2012-12149-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12149-7

Keywords

Navigation