Skip to main content
Log in

A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: The role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very limited in our understanding of these processes in boreal and high latitude plant communities, especially in the permafrost areas of our planet. First and foremost, this is holds true for winter periods. Here, we present the results of two years of field observations in the southern taiga and southern shrub tundra ecosystems in European Russia. We pioneered the simultaneous application of two independent methods: classic mass loss estimation by the litter-bag technique and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach allows us to reconstruct the intraseasonal dynamics of the decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and fragmentation in the process of plant matter decomposition, and to determine its factors under a different temporal scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R., The freezer defrosting: global warming and litter decomposition rates in cold biomes, J. Ecol., 2006, vol. 94, pp. 713–724.

    Article  Google Scholar 

  • Allison, S.A., Gartner, T.B., Mack, M.C., et al., Nitrogen alters carbon dynamics during early succession in boreal forest, Soil Biol. Biochem., 2010, vol. 42, pp. 1157–1164.

    Article  CAS  Google Scholar 

  • Arft, A.M., Walker, M.D., Gurevitch, J., et al., Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment, Ecol. Monogr., 1999, vol. 64, pp. 491–511.

    Google Scholar 

  • Baptist, F. and Yoccoz, N.G., Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient, Plant Soil, 2010, vol. 328, pp. 397–410.

    Article  CAS  Google Scholar 

  • Bayley, S.E., Thormann, M.N., and Szumigalski, A.R., Nitrogen mineralization and decomposition in western boreal bog and fen peat, Ecoscience, 2005, vol. 12, no. 4, pp. 455–465.

    Article  Google Scholar 

  • Berg, B., de Calvo Anta, R., Escudero, A., et al., The chemical composition of newly shed needle litter of Scots pine, and some other pine species in a climatic transect. X. Long term decomposition in Scots pine forest, Can. J. Bot., 1995, vol. 73, pp. 1423–1435.

    Article  CAS  Google Scholar 

  • Bokhorst, S., Huiskes, A., Convey, P., and Aerts, R., Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands, Global Change Biol., 2007, vol. 13, pp. 2642–2653.

    Article  Google Scholar 

  • Bokhorst, S., Bjerke, J.W., Melillo, J., Callaghan, T.V., and Phoenix, G.K., Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heath community, Soil Biol. Biochem., 2010, vol. 42, pp. 611–617.

    Article  CAS  Google Scholar 

  • Bragazza, L., Lacumin, P., Siffi, Ch., and Gerdol, R., Seasonal variation in nitrogen isotopic composition of bog plant litter during 3 years of field decomposition, Biol. Fertil. Soils, 2010, vol. 46, pp. 877–881.

    Article  CAS  Google Scholar 

  • Bradford, M.A., Tordoff, G.M., Eggers, T., et al., Microbiota, fauna, and mesh size interactions in litter decomposition, Oikos, 2002, vol. 99, pp. 317–323.

    Article  Google Scholar 

  • Buckeridge, K.M., Zufelt, E., Chu, H., and Grogan, P., Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks, Plant Soil, 2010, vol. 330, pp. 407–421.

    Article  CAS  Google Scholar 

  • Chapin, F.S. III, Bret-Harte, M.S., Hobbie, S.E., and Zhong, H., Plant functional types as predictors of transient responses of arctic vegetation to global change, J. Veg. Sci., 1996, vol. 7, pp. 347–358.

    Article  Google Scholar 

  • Cornwell, W.K., Cornellisen, J.H.C., Amatangelo, K., et al., Plant species traits are the predominant control on litter decomposition rates within biomes worldwide, Ecol. Lett., 2008, vol. 10, pp. 1065–1071.

    Article  Google Scholar 

  • Cornelissen, J.H.C., van Bodegom, P., Aerts, R., et al., Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold bioms, Ecol. Lett., 2007, vol. 10, pp. 619–627.

    Article  PubMed  Google Scholar 

  • Dormann, C.F. and Woodin, S.J., Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments, Funct. Ecol., 2002, vol. 16, pp. 4–17.

    Article  Google Scholar 

  • Dorrepaal, E., Cornelissen, J.H.C., Aerts, R., Wallen, B., and van Logtestijn, R.S.P., Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J. Ecol., 2005, vol. 93, pp. 817–828.

    Article  Google Scholar 

  • Edwards, A.C., Scalenghe, R., and Freppaz, M., Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review, Quat. Int., 2007, vol. 172, pp. 162–163.

    Google Scholar 

  • Gartner, T.B. and Cardon, Z.G., Decomposition dynamics in mixed-species leaf litter, Oikos, 2004, vol. 104, pp. 230–246.

    Article  Google Scholar 

  • Heal, O.W., Latter, P.M., and Howson, J., A study of the rates of decomposition of organic matter, in Production Ecology of British Moors and Mountain Grassland, Berlin: Springer-Verlag, 1978, pp. 136–159.

    Chapter  Google Scholar 

  • Hilli, S., Stark, S., and Derome, J., Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients, Appl. Soil Ecol., 2010, vol. 46, pp. 200–208.

    Article  Google Scholar 

  • Hobbie, S.E. and Chapin, F.S., Winter regulation of tundra litter carbon and nitrogen dynamics, Biogeochemistry, 1996, vol. 35, pp. 327–338.

    Article  Google Scholar 

  • Hobbie, S.E. and Gough, L., Litter decomposition in moist acidic and non-acidic tundra with different glacial histories, Oecologia, 2004, vol. 140, pp. 113–124.

    Article  PubMed  Google Scholar 

  • Hollister, R.D., Webber, P.J., and Tweedie, C.E., The response of Alaskan tundra to experimental warming: differences between short- and long-term responses, Global Change Biol., 2005, vol. 11, pp. 525–536.

    Article  Google Scholar 

  • Jónsdóttir, I.S., Magnússon, B., Gudmundsson, J., Elmarsdottir, A., and Hjartarson, H., Variable sensitivity of plant communities in Iceland to experimental warming, Global Change Biol., 2005, vol. 11, pp. 553–563.

    Article  Google Scholar 

  • Kampichler, C. and Bruckner, A., The role of microarthropods in terrestrial decomposition: a metaanalysis of 40 years of litterbag studies, Biol. Rev., 2009, vol. 84, pp. 375–389.

    Article  PubMed  Google Scholar 

  • Karelin, D.V. and Zamolodchikov, D.G., Uglerodnyi obmen v kriogennykh ekosistemakh (Carbon Exchange in Cryogenic Ecosystems), Moscow: Nauka, 2008.

    Google Scholar 

  • Karelin, D.V., Zamolodchikov, D.G., Zukert, N.V., Chestnykh, O.V., Pochikalov, A.V., and Krayev, G.N., Interannual changes in PAR and soil moisture during the warm season may be more important for directing of annual carbon balance in tundra than temperature fluctuations, Zh. Obshch. Biol., 2013, vol. 74, no. 1, pp. 3–22.

    CAS  PubMed  Google Scholar 

  • Koenig, R.T. and Cochran, V.L., Decomposition and nitrogen mineralization from legume and non-legume crop residues in a subarctic agricultural soil, Biol. Fertil. Soils, 1994, vol. 17, pp. 269–275.

    Article  Google Scholar 

  • Koptsik, G.N., Smirnova, I.E., Livantsova, S.Yu., Koptsik, S.V., Zakharova, A.I., and Vostretsova, E.V., A role of the plant litter and bed in biological cycle of the elements in forest ecosystems of Zvenigorodskaya biological station, Tr. Zvenigorod. Biol. Stn., 2011, vol. 5, pp. 18–32.

    Google Scholar 

  • Kurz-Besson, C., Coûteaux, M.-M., Thiéry, J.M., et al., A comparison of litterbag and direct observation methods of Scots pine needle decomposition measurement, Soil Biol. Biochem., 2005, vol. 37, pp. 2315–2318.

    Article  CAS  Google Scholar 

  • Lang, S.I., Cornelissen, J.H.C., Klahn, Th., et al., An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species, J. Ecol., 2009, vol. 97, pp. 886–900.

    Article  CAS  Google Scholar 

  • Moore, T.R., Trofymow, J.A., Siltanen, M., Prescott, C., et al., Patterns of decomposition and carbon, nitrogen, and phosphorus dynamics of litter in upland forest and peatland sites in central Canada, Can. J. Res., 2005, vol. 35, pp. 133–142.

    Article  CAS  Google Scholar 

  • Murphy, K.L., Klopatek, J.M., and Klopatek, C.C., The effects of litter quality and climate on decomposition along an elevational gradient, Ecol. Appl., 1998, vol. 8, pp. 1061–1071.

    Article  Google Scholar 

  • Osterkamp, T.E. and Romanovsky, V.E., Freezing of the active layer on the coastal plain of the Alaskan Arctic, Permafrost Periglacial Processes, 1997, vol. 8, pp. 23–44.

    Article  Google Scholar 

  • Parker, L.W., Santos, P.F., Phillips, J., and Whitford, W.G., Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual, Lepidium lasiocarpum, Ecol. Monogr., 1984, vol. 54, pp. 339–360.

    Article  CAS  Google Scholar 

  • Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S., et al., Global-scale similarities in nitrogen release patterns during long-term decomposition, Science, 2007, vol. 315, pp. 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Palviainen, M., Finér, L., Kurka, A.-M., et al., Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest, Plant Soil, 2004, vol. 263, pp. 53–67.

    Article  CAS  Google Scholar 

  • Prescott, C.E., Does nitrogen availability control rates of litter decomposition in forests? Plant Soil, 1995, vol. 168-169, pp. 83–88.

    Article  CAS  Google Scholar 

  • Quested, H.M., Cornelissen, J.H.C., Press, M.C., et al., Litter decomposition of sub-arctic plant species with differing nitrogen economies: a potential functional role for hemiparasites, Ecology, 2003, vol. 84, pp. 3209–3221.

    Article  Google Scholar 

  • Robinson, C.H., Controls on decomposition and soil nitrogen availability at high latitudes, Plant Soil, 2002, vol. 242, pp. 65–81.

    Article  CAS  Google Scholar 

  • Robinson, C.H., Wookey, P.A., Parsons, A.N., et al., Responses of plant litter decomposition and nitrogen mineralization to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath, Oikos, 1995, vol. 74, pp. 503–512.

    Article  Google Scholar 

  • Steltzer, H. and Bowman, W.D., Litter N retention over winter for a low and a high phenolic species in the alpine tundra, Plant Soil, 2005, vol. 275, pp. 361–370.

    Article  CAS  Google Scholar 

  • Thormann, M.N., Bayley, S.E., and Currah, R.S., Comparison of decomposition of belowground and aboveground plant litters in peatlands of boreal Alberta, Canada, Can. J. Bot., 2001, vol. 79, pp. 9–22.

    CAS  Google Scholar 

  • Trofymow, J.A., Moore, T.R., Titus, B., et al., Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate, Can. J. For. Res., 2002, vol. 32, pp. 789–804.

    Article  Google Scholar 

  • van Cleve, K., Organic matter quality in relation to decomposition, in Soil Organisms and Decomposition in Tundra, Holding, A.J., Heal, O.W., MacLean, S.F., Jr., and Flanagan, P.W., Eds., Stockholm: Tundra Biome Steering Committee, 1974, pp. 311–324.

    Google Scholar 

  • Verhoeven, J.T.A. and Toth, E., Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates, Soil Biol. Biochem., 1995, vol. 27, pp. 271–275.

    Article  CAS  Google Scholar 

  • Wall, D.H., Bradford, M.A., John, M.G. St., et al., Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Global Change Biol., 2008, vol. 14, pp. 2661–2677.

    Google Scholar 

  • Wardle, D.A., Bonner, K.I., and Nicholson, K.S., Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function, Oikos, 1997, vol. 79, no. 2, pp. 247–258.

    Article  Google Scholar 

  • Wardle, D.A., Nilsson, M.-Ch., Zackrisson, O., and Gallet, Ch., Determinants of litter mixing effects in a Swedish boreal forest, Soil Biol. Biochem., 2003, vol. 35, pp. 827–835.

    Article  CAS  Google Scholar 

  • Zamolodchikov, D.G., Lopes de Gerenu, V.O., Karelin, D.V., Ivashchenko, A.I., and Chestnykh, O.V., Carbon emission by the southern tundra during cold seasons, Dokl. Biol. Sci., 2000, vol. 372, nos. 1–6, pp. 312–314.

    CAS  PubMed  Google Scholar 

  • Zhang, D., Hui, D., Luo, Y., and Zhou, G., Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 2008, vol. 1, no. 2, pp. 85–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pochikalov.

Additional information

Original Russian Text © A.V. Pochikalov, D.V. Karelin, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 3, pp. 163–181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pochikalov, A.V., Karelin, D.V. A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: The role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale. Biol Bull Rev 5, 1–16 (2015). https://doi.org/10.1134/S2079086415010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415010077

Keywords

Navigation