Skip to main content
Log in

Transverse folding and evolution of the hind wings in beetles (Insecta, Coleoptera)

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Sharp intensification of the protective function of the fore wing in Coleoptera has made their flight apparatus posteromotoric and initiated the development of an apparatus for folding the hind wings beneath the elytra. This could hardly take place without a higher deformability of veins relative to each other, which diminished the strength properties of the wing support. The effect has been stressed by the presence of folds. The wing support and folding pattern evolved as interrelated: the former evolved to be more flexible, with no or minimum loss of rigidity; the latter evolved to be less harmful for the supporting structures. The only function performed, as well as simple structure and low specialization of folds made the folding pattern highly labile in the course of evolution. It evolved superior to wing venation, thus defining many transformations of the latter. This evolutionary conservatism of wing venation stemmed from the fact that many veins performed two conflicting functions. For this conflict to be resolved an adaptive compromise was needed, which brought the wing to orthogenetic development. The main evolutionary trends in wing venation and the folding pattern were those towards simplification and higher complexity, respectively. The coleopteran wing has passed two main evolutionary stages. The major evolutionary factors were wing posteromotorism at the first stage of evolution, with a trend toward miniaturization at the second stage. Each stage resulted in the development of a particular wing type, archostematan and “cantharoid”, respectively. They differ fundamentally. In the wing of the former type, the folding and flight apparatus constitute a steady coadaptive ensemble, because their supporting systems overlap considerably. This wing remained stable through evolution, and its structural variations were only minor deviations from the ground plan. The development of the “cantharoid” wing type was an upgrade of the morphofunctional organization. The region of maximum transverse deformations initiated by folding was extruded bayond the basal, supporting, part of the remigium, which contributed much to rigid properties of the chief supporting axes. The two wing apparatus have become more autonomous after acquiring the above structure. This expanded the range of possible specialization and gave rise to a great variety of derived wing types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander, R., Animal Mechanics, London: Sidgwick & Jackson, 1968.

    Google Scholar 

  • Blum, P., Zur Phylogenie und Ökologischen Bedeutung der Elytrenreduktion und Abdomenbeweglichkeit der Staphylinidae (Coleoptera). Vergleichend- und funktionsmorphologische Untersuchungen, Zool. Jb. Anat., 1979, vol. 102, no. 4, pp. 533–582.

    Google Scholar 

  • Brackenbury, J.H., Wing folding and free-flight kinematics in Coleoptera (Insecta): a comparative study, J. Zool., London, 1994, vol. 232, part 2, pp. 253–283.

    Article  Google Scholar 

  • Brodskii, A.K., Evolution of wing apparatus of stoneflies (Plecoptera). III. Deformation of the wings of Isogenus nubecula Newm. during flying, Entomol. Obozr., 1981, vol. 60, no. 3, pp. 523–534.

    Google Scholar 

  • Brodskii, A.K., Evolution of wing apparatus of stoneflies (Plecoptera). IV. Kinematics of the wings and conclusions, Entomol. Obozr., 1982, vol. 61, no. 3, pp. 491–500.

    Google Scholar 

  • Brodskii, A.K., Mechanika poleta nasekomykh i evolyutsiya ikh krylovogo apparata (Mechanics of the Insect’s Flying and Evolution of the Wing Apparatus), Leningrad: Leningr. Gos. Univ., 1988.

    Google Scholar 

  • Crowson, R.A., The Natural Classification of the Families of Coleoptera, London: N. Lloyd & Co., 1955.

    Google Scholar 

  • Crowson, R.A., The evolutionary history of Coleoptera, as documented by fossil and comparative evidence, in Atti del Congresso Nazionale Italiano di Entomologia, Sassari, Maggio 20–25, 1974, Firenze, Italy, 1975, pp. 47–90.

    Google Scholar 

  • Fedorenko, D.N., Evolution of the Beetle Hind Wing with Special Reference to Folding (Insecta, Coleoptera), Sofia: Pensoft., 2009.

    Google Scholar 

  • Forbes, W.T.M., The wing-venation of the Coleoptera, Ann. Entomol. Soc. Am., 1922, vol. 15, no. 4, pp. 328–345.

    Article  Google Scholar 

  • Forbes, W.T.M., The wing folding patterns of the Coleoptera, J. N.Y. Entomol. Soc., 1926, vol. 34, no. 1, pp. 42–68; no. 2, pp. 912–139.

    Google Scholar 

  • Grodnitsky, D.L., Adaptation of the distinct-stage insects to flapping motion, Zool. Zh., 1996, vol. 75, no. 5, pp. 692–700.

    Google Scholar 

  • Grodnitsky, D.L. and Morozov, P.P., Morphology, flight kinematics and deformation of the wings in holometabolan insects (Insecta: Oligoneoptera + Scarabaeiformes), Russ. Entomol. J., 1994, vol. 3, nos. 3–4, pp. 3–32.

    Google Scholar 

  • Haas, F., Geometrie, Mechanik und Evolution der Flugelfaltung bei den Coleoptera (Insecta), PhD Thesis, Jena, 1998.

    Google Scholar 

  • Haas, F. and Beutel, R.G., Wing folding and the functional morphology of the wing base in Coleoptera, Zoology, 2001, vol. 104, pp. 123–141.

    Article  CAS  PubMed  Google Scholar 

  • Haas, F., Gorb, S., and Blikhan, R., The function of resilin in beetle wings, Proc. R. Soc. Lond. B, 2000, vol. 267, pp. 1375–1381.

    Article  CAS  Google Scholar 

  • Haas, F. and Kukalová-Peck, J., Dermaptera hind-wing structure and folding: new evidence for familial, ordinal, and superordinal relationships within Neoptera (Insecta), Eur. J. Entomol., 2001, vol. 98, pp. 445–509.

    Article  Google Scholar 

  • Haas, F. and Wootton, R.J., Two basic mechanisms in insect wing folding, Proc. R. Soc. Lond. B, 1996, vol. 263, pp. 1651–1658.

    Article  Google Scholar 

  • Hammond, P.M., Wing-folding mechanisms of beetles, with special reference to investigations of adephagan phylogeny, in Carabid Beetles: Their Evolution, Natural History, and Classification, Erwin, T.L., Ball, G.E., Whitehead, D.R., and Halpern, A.L., Eds., The Hague: W. Junk, 1979, pp. 113–180.

    Chapter  Google Scholar 

  • Heberdey, R.F., Beiträge zum Bau des Subelytralraumes und zur Atmung der Coleopteren, Z. Morphol. Ökol. Tiere, 1938, vol. 33, pp. 667–734.

    Article  Google Scholar 

  • Kukalová-Peck, J., Fossil history and evolution of hexapod structures, in CSIRO, Insects of Australia. A Textbook for Students and Research Workers, 2nd ed., Carlton: Melbourne Univ. Press, 1991, vol. 1, pp. 141–179.

    Google Scholar 

  • Kukalová-Peck, J. and Lawrence, J.F., Evolution of the hind wing in Coleoptera, Can. Entomol., 1993, vol. 125, pp. 181–258.

    Article  Google Scholar 

  • Kukalová-Peck, J. and Lawrence, J.F., Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters, Eur. J. Entomol., 2004, vol. 101, pp. 95–144.

    Article  Google Scholar 

  • Lawrence, J.F. and Newton, A.F., Jr., Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names), in Biology, Phylogeny and Classification of Coleoptera: Papers Celebrating the 80th Birthday of R.A. Crowson, Pakaluk, J. and Ślipiński, S.A., Eds., Warszawa: Muz. Inst. Zool., Pol. Acad. Nauk, 1995, pp. 779–1006.

    Google Scholar 

  • Lawrence, J.F., Ślipiński, S.A., and Pakaluk, J., From Latreille to Crowson: a history of the higher-level classification of beetles, in Biology, Phylogeny and Classification of Coleoptera: Papers Celebrating the 80th Birthday of R.A. Crowson, Pakaluk, J. and Ślipiński, S.A., Eds., Warszawa: Muz. Inst. Zool., Pol. Acad. Nauk, 1995, pp. 87–154.

    Google Scholar 

  • Lyubarskii, G.Yu., Arkhetip, stil’ i rang v biologicheskoi sistematike (Archetype, Style, and Range in Biological Systematics), Moscow: KMK, 1996.

    Google Scholar 

  • Magnan, A., La Locomotion Chez les Animaux, 1. Le Vol des Insects, Paris: Herman & Co., 1934.

    Google Scholar 

  • Marden, J.H., Maximum lift production during takeoff in flying animals, J. Exp. Biol., 1987, vol. 130, pp. 235–258.

    Google Scholar 

  • Meien, S.V., Major aspects of typology of the organisms, Zh. Obshch. Biol., 1978, vol. 39, no. 4, pp. 495–508.

    Google Scholar 

  • Ponomarenko, A.G., Division of Coleoptera to suborders, in Chteniya pamyati N.A. Kholodkovskogo “Voprosy paleontologii nasekomykh” (Readings Dedicated to the Memory of N.A. Kholodkovskii “Paleontology of the Insects”), Leningrad: Nauka, 1973, pp. 78–89.

    Google Scholar 

  • Rasnitsyn, A.P., Origin and evolution of lower Hymenoptera, Tr. Paleontol. Inst. Akad. Nauk SSSR, 1969, vol. 123, pp. 1–196.

    Google Scholar 

  • Rasnitsyn, A.P., Inadaptation and evadaptation, Paleontol. Zh., 1986, no. 1, pp. 3–7.

    Google Scholar 

  • Rasnitsyn, A.P., Evolution rate and theory: hypothesis of adaptive compromise, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Moscow: Nauka, 1987, pp. 46–63.

    Google Scholar 

  • Schmalhausen, I.I., Regulyatsiya formoobrazovaniya v individual’nom razvitii (Regulation of Specification in Individual Development), Moscow: Nauka, 1964.

    Google Scholar 

  • Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism as the Whole in Individual and Historical Development), Moscow: Nauka, 1982.

    Google Scholar 

  • Schneider, P., Die Flugtypen der Käfer (Coleoptera), Entomol. German., 1975, vol. 1, nos. 3–4, pp. 222–231.

    Google Scholar 

  • Schneider, P., Die Flug- und Faltungstypen der Käfer (Coleoptera)., Zool. Jb., Anat., 1978, vol. 99, no. 2, pp. 174–210.

    Google Scholar 

  • Schneider, P., Flugverhalten und Stoffwechsel des Südafrikanischen Fruchtkäfers Pachnoda sinuate, Heidelberg: Wissenschaftliche Filme aus Heidelberg, 1997.

    Google Scholar 

  • Vogel, S., Flight in Drosophila. II. Variation in stroke parameters and wing contour, J. Exp. Biol., 1967, vol. 46, no. 2, pp. 383–392.

    CAS  PubMed  Google Scholar 

  • Wallace, F.L. and Fox, R.C., A comparative morphological study of the hind wing venation of the order Coleoptera, part I, Proc. Entomol. Soc. Washington, 1975, vol. 77, no. 3, pp. 329–354.

    Google Scholar 

  • Wallace, F.L. and Fox, R.C., A comparative morphological study of the hind wing venation of the order Coleoptera, II, Proc. Entomol. Soc. Washington, 1980, vol. 82, no. 4, pp. 609–654.

    Google Scholar 

  • Weis-Fogh, T., Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production, J. Exp. Biol., 1973, vol. 59, no. 1, pp. 169–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Fedorenko.

Additional information

Original Russian Text © D.N. Fedorenko, 2013, published in Zhurnal Obshchei Biologii, 2013, Vol. 74, No. 6, pp. 472–487.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, D.N. Transverse folding and evolution of the hind wings in beetles (Insecta, Coleoptera). Biol Bull Rev 5, 71–84 (2015). https://doi.org/10.1134/S2079086415010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415010028

Keywords

Navigation