Skip to main content
Log in

Molecular diversity of common wheat introgression lines (T. aestivum/T. timopheevii)

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We investigated genetic diversity of T. aestivum/T. timopheevii introgression lines in relation to microsatellite loci and resistance to fungal diseases. The genotyping of hybrid lines and parental cultivars of common wheat with 143 Simple Sequence Repeat (SSR) markers revealed, respectively, 521 and 440 alleles or 3.24/2.73 alleles on average per microsatellite locus. A comparison of individual chromosomes with respect to the indices of genetic diversity revealed that chromosomes 4D and 5D show the lowest diversity for SSR loci, both in parents and hybrid lines, while chromosomes 5B and 6A presented the highest indices (0.62–0.68). Evaluation of SSR polymorphisms and indices in three genomes of introgression wheat lines revealed that chromosomes of genome B presented higher indices than genomes A and D (B > A > D), which may be the result of alien introgression in these chromosomes. A comparison of the results of the molecular and phytopathological tests indicates that despite the stringent selection for resistance to leaf rust during early generations, and a large number of subsequent selfing generations, the genetic diversity of introgression lines, with respect to microsatellite loci, is preserved, which is indicative of the stability of the alien genetic material transmitted to the common wheat genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abugalieva, S.I., Volkova, L.A., Ermekbaev, K.A., and Turuspekov, E.K., Genotyping of commercial spring wheat cultivars in Kazakhstan using microsatellite DNA markers, Biotekhnol. Theor. Prakt., 2012, no. 2, pp. 35–45.

    Google Scholar 

  • Barakat, M.N., Al-Doss, A.A., Elshafei, A.A., Ghazy, A.I., and Khaled, A.M., Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits, Austr. J. Crop Sci., 2013, vol. 7, pp. 104–111.

    Google Scholar 

  • Bryan, G.L., Collins, A.J., Stephenson, P., et al., Isolation and characterization of microsatellites from hexaploid bread wheat, Theor. Appl. Genet., 1997, vol. 94, pp. 557–563.

    Article  CAS  Google Scholar 

  • Budashkina, E.B. and Kalinina, N.P., Development and genetic analysis of common wheat introgressive lines resistant to leaf rust, Acta Phytopathol. Entomol., 2001, vol. 36, pp. 61–65.

    Article  Google Scholar 

  • Cox, T.S., Murphy, J.P. and Rodgers, D.M., Changes in genetic diversity in the red winter wheat from regions of the united states, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 5583–5586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng, X.J., Luo, X.D., Dai, L.F., et al., Genetic diversity and genetic changes in the introgression lines derived from Oryza sativa L. mating with O. rufipogon Griff, J. Integr. Agric., 2012, vol. 11, pp. 1059–1066.

    Article  CAS  Google Scholar 

  • Dice, L.R., Measures of the amount of ecologic association between species, Ecology, 1945, vol. 26, pp. 297–302.

    Article  Google Scholar 

  • Dreisigacker, S., Zhang, P., Warburton, M.L., et al., SSR and pedigree analyses of genetic diversity among CIMMIT wheat lines targeted to different megaenvironments, Crop Sci., 2004, vol. 44, pp. 381–388.

    Article  CAS  Google Scholar 

  • Dreisigacker, S., Melchinger, A.E., Zhang, P., et al., Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage, Euphytica, 2005, vol. 144, pp. 51–59.

    Article  CAS  Google Scholar 

  • Falke, K.C., Susic, Z., Wilde, P., et al., Testcross performance of rye introgression lines developed by markerassisted backcrossing using an Iranian accession as donor, Theor. Appl. Genet., 2009, vol. 118, pp. 1225–1238.

    Article  CAS  PubMed  Google Scholar 

  • Ganal, M.W. and Röder, M.S., Microsatellite and SNP markers in wheat breeding, in Genomics Assisted Crop Improvement, Varshney, R.K. and Tuberosa, R., Eds., Springer, 2007, vol. 2, pp. 1–24.

    Google Scholar 

  • Ganeva, G., Korzun, V., Landjeva, S., et al., Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers, Genet. Resour. Crop Evol., 2010, vol. 57, pp. 273–285.

    Article  CAS  Google Scholar 

  • Gordeeva, E.I., Leonova, I.N., Kalinina, N.P., Salina, E.A., and Budashkina, E.B., Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of Triticum timopheevii Zhuk., Russ. J. Genet., 2009, vol. 45, no. 12, pp. 1428–1437.

    Article  CAS  Google Scholar 

  • Graner, A., Ludwig, W.F., and Melchinger, A.E., Relationship among European barley germplasm. II. Comparison of RFLP and pedigree data, Crop Sci., 1995, vol. 34, pp. 1199–1205.

    Article  Google Scholar 

  • Huang, X.Q., Borner, A., Röder, M.S., and Ganal, M.W., Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Gao, Q.R., Li, L.J., et al., Genetic diversity of recurrent selection populations with Ms2 gene assessed by gliadins in common wheat (Triticum aestivum L.), Agr. Sci. China, 2010, vol. 9, pp. 615–625.

    Article  CAS  Google Scholar 

  • Landjeva, S., Korzun, V., and Borner, A., Molecular markers: actual and potential contributions to wheat genome characterization and breeding, Euphytica, 2007, vol. 156, pp. 271–296.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Dobrovol’skaya, O.B., Kaminskaya, L.N., et al., Molecular analysis of the triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ, Russ. J. Genet., 2005, vol. 41, no. 9, pp. 1014–1020.

    Article  CAS  Google Scholar 

  • Leonova, I.N., Röder, M.S., Kalinina, N.P., and Budashkina, E.B., Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines, Russ. J. Genet., 2008, vol. 44, pp. 1431–1437.

    Article  CAS  Google Scholar 

  • Li, L., Yaoyu, X., Wensheng, C., et al., The genetic variation of the backcross modified lines developed from the maize line 08-641 selected by different directions, Sci. Res., 2012, vol. 3, pp. 918–922.

    Google Scholar 

  • Liu, J., Liu, L., Hou, N., et al., Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits, Euphytica, 2007, vol. 155, pp. 249–258.

    Article  CAS  Google Scholar 

  • Mains, E.B. and Jackson, H.S., Physiological specialization in the leaf rust of wheat, Puccinia triticina Erikss, Phytopathology, 1926, vol. 16, pp. 89–120.

    Google Scholar 

  • Maric,- S., Bolaric,- S., and Martinic,- J., et al., Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage, Plant Breed., 2004, vol. 123, pp. 366–369.

    Article  CAS  Google Scholar 

  • Masum-Akond, A.S.M.G., Watanabe, N., and Furuta, Y., Comparative genetic diversity of Triticum aestivumTriticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment, Genet. Resour. Crop Evol., 2008, vol. 55, pp. 133–141.

    Article  Google Scholar 

  • Mitrofanova, O.P., Strelchenko, P.P., Zuev, E.V., Street, K., Konopka, J., and Mackay, M., Genetic diversity of bread wheat landraces collected by scientific expeditions in Afghanistan, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 3, pp. 1–11.

    Article  Google Scholar 

  • Nei, M., Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 3321–3323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noori, A., Ahmadikhah, A., Soughi, H., and Dehghan, M., The effects of selection for multiple traits on diversity of advanced wheat lines revealed by molecular markers, Adv. Appl. Sci. Res., 2010, vol. 1, pp. 153–159.

    CAS  Google Scholar 

  • Rauf, S., Tariq, S.A., and Hassan, S.W., Estimation of pedigree based diversity in Pakistani wheat (Triticum aestivum L.) germplasm, Commun. Biometry Crop Sci., 2012, vol. 7, pp. 14–22.

    Google Scholar 

  • Riberto-Carvalho, C., Guedes-Pinto, H., Igrejas, G., et al., High levels of genetic diversity throughout the range of the Portuguese wheat landrace ‘Barbela’, Ann. Botany, 2004, vol. 94, pp. 699–705.

    Article  Google Scholar 

  • Rohlf, F.J., NTSYS-pc: numerical taxonomy and multivariate analysis system, vers. 2.0, New York: Applied Biostatistics Inc., 1998.

    Google Scholar 

  • Roussel, V., Leisova, L., Exbrayat, F., et al., SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000, Theor. Appl. Genet., 2005, vol. 111, pp. 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Salina, E.A., Leonova, I.N., Efremova, T.T., and Roder, M.S., Wheat genome structure: translocations during the course of polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Teklu, Y., Hammer, K., Huang, X.Q., and Röder, M.S., Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces, Genet. Resour. Crop Evol., 2006, vol. 53, pp. 1115–1126.

    Article  CAS  Google Scholar 

  • van de Wouw, M., Kik, C., van Hintum, T., et al., Genetic erosion in crops: concept, research results and challenges, Plant Genet. Resour., 2009, vol. 8, pp. 1–15.

    Article  Google Scholar 

  • Vanzetti, L.S., Yerkovich, N., Chialvo 1, E., et al., Genetic structure of Argentinean hexaploid wheat germplasm, Genet. Mol. Biol., 2013, vol. 36, pp. 391–399.

    Article  PubMed Central  PubMed  Google Scholar 

  • Varshney, R.K., Mahendar, T., Aggarwal, R.K., and Börner, A., Genic molecular markers in plants: development and applications in Genomics-Assisted Crop Improvement, Varshney, R.K., Tuberosa, R., Eds., 2007, vol. 1, pp. 13–29.

    Google Scholar 

  • Zakharenko, V.A., Medvedev, A.M., Erokhina, S.A., et al., Metodika po otsenke ustoichivosti sortov polevykh kul’tur na infektsionnykh i provokatsionnykh fonakh (Methods to Assess the Resistance of Field Crop Cultivars on Infectious and Provocative Backgrounds), Moscow: Rossel’khozakademiya, 2000.

    Google Scholar 

  • Zhang, P., Dreisigacker, S., Melchinger, A.E., et al., Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcrossderived lines using SSR markers, Mol. Breed., 2005, vol. 15, pp. 1–10.

    Article  Google Scholar 

  • Zhang, L.Y., Liu, D.C., Guo, X.L., et al., Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers, BMC Genet., 2011, vol. 12, p. 42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Leonova.

Additional information

Original Russian Text © I.N. Leonova, O.A. Orlovskaya, M.S. Röder, M.A. Nesterov, E.B. Budashkina, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/1, pp. 681–690.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonova, I.N., Orlovskaya, O.A., Röder, M.S. et al. Molecular diversity of common wheat introgression lines (T. aestivum/T. timopheevii). Russ J Genet Appl Res 5, 191–197 (2015). https://doi.org/10.1134/S2079059715030090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715030090

Keywords

Navigation