Skip to main content
Log in

The centenary of Sagnac effect and its applications: From electromagnetic to matter waves

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

G. Sagnac published in 1913 the first experimental observation of the effect of a rotation on the fringe phase shift in an optical interferometer. His discovery has stimulated a century long debate on its meaning and interpretation, and reveals nowadays, 100 years later, that his observations are universal and exist for any kind of waves, from optical (or electromagnetic) waves to the most recently used matter-waves. With the breakthrough in the discovery of lasers, and lately the discovery of ultra cold atoms, rotation sensors using the Sagnac effect are nowadays reaching the best levels in precision inertial measurement and are currently at the heart of the navigation systems, and could even be used in the future to study precisely the rotation of the earth or to set the frontiers of general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, R., Bilger, H.R., and Stedman, G.E., Sagnac Effect: A Century of Earth-Rotated Interferometers, Am. J. Phys., 1994, vol. 62, no. 11, pp. 975–985.

    Article  Google Scholar 

  2. Sagnac, G., L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme, in C.R. Acad. Sci. (Paris) 1913, t. 157, pp. 708–710.

    Google Scholar 

  3. Sagnac, G., Effect tourbillonnaire optique. La circulation de l’éther lumineux dans un interférographe tournant, J. Phys. Radium, 1914, Ser. 5, t. 4, pp. 177–195.

    Google Scholar 

  4. Michelson, A.A., Relative Motion of Earth and Aether, Philos. Mag., 1904, no. 8, pp. 716–719.

    Google Scholar 

  5. Harress, F., thesis, Jena (unpublished), accounted in O. Knopf, 1. Die versuche von F. Haress über die geschwindigheit des lichtes in bewegten körpen, Ann. Phys., 1920, Vierte Folge 62, pp. 389–447.

    Google Scholar 

  6. Fizeau, H., Sur les hypothèses relatives à l’éther lumineux, Comptes Rendus, 1851, vol. 33, pp. 349–355.

    Google Scholar 

  7. Michelson, A.A., Gale, H.G., and Person, F., The Effect of the Earth’s Rotation on the Velocity of Light, Astrophys. J., 1925, vol. 61, pp. 137–145.

    Article  Google Scholar 

  8. Macek, W. and Davis, D., Rotation Rate Sensing with Traveling-Wave Ring Lasers, Applied Physics Letters, 1963, no. 2 (3), pp. 67–68.

    Google Scholar 

  9. Vali, V. and Shorthill, R., Passive Ring Interferometer, Applied Optics, 1976, vol. 15, pp. 1099–1100.

    Article  Google Scholar 

  10. Stedman, G.E., Ring-Laser Tests of Fundamental Physics and Geophysics, Rep. Prog. Phys., 1997, vol. 60, pp. 615–688.

    Article  Google Scholar 

  11. Post, E.J., Sagnac Effect, Rev. Mod. Phys., 1967, vol. 39, pp. 475–494.

    Article  Google Scholar 

  12. Chow, W.W., et al., The Ring Laser Gyro, Rev. Mod. Phys., 1985, vol. 57, no. 1, pp. 61–104.

    Article  Google Scholar 

  13. Riehle, F., Kisters, T., Witte, A., and Helmcke, J., Optical Ramsay Spectroscopy in a Rotating Frame: Sagnac Effect in a Matter-Wave Interferometer, Phys. Rev. Lett., 1991, vol. 67, no. 2, pp. 177–180.

    Article  Google Scholar 

  14. Gustavson, T.L., Bouyer, P., and Kasevich, M.A., Precision Rotation Measurements with an Atom Interferometer Gyroscope, Phys. Rev. Lett., 1997, vol. 78, no. 11, pp. 2046–2049.

    Article  Google Scholar 

  15. Pavlath, G.A., Northrop Grumman, Fiber-Optic Gyros: The Vision Realized, Report No. 24235, in http://www.es.northropgrumman.com/by-division/navigationsystems/whitepapers/assets/Fiber-Optic-Gyros.pdf

  16. Northrop Grumman, LN-251 Embedded INS/GPS System, Report No. 22940/02-06/2000/Crawford in http://www.es.northropgrumman.com/solutions/ln251/assets/LN-251-Embedded-INS-GPS-System.pdf.

  17. Cohen-Tannoudji, C., Phillips, W.B., and Chu, S., Nobel 1998; Metcalf, H.J. and Van Der Straten, P., Laser Cooling and Trapping, Berlin: Springer Verlag, 1999.

    Google Scholar 

  18. Weiman, C., Cornell, E., and Ketterle, W., Nobel 2001; When Atoms Behave as Waves: Bose-Einstein Condensation and the Atom Laser, in Les Prix Nobel 2001 (The Nobel Foundation, Stockholm, 2002), pp. 118–154; reprinted in: ChemPhysChem, 2002, vol. 3, pp. 736–753, Rev. Mod. Phys., 2002, vol. 74, no. 4, pp. 1131–1151.

    Google Scholar 

  19. Special issue of Appl. Phys., B, vol. 54, 1992, or Atom Interferometry, Berman, P.R., Ed., Academic Press, 1997.

  20. http://sites.google.com/site/migaproject/project-definition

  21. Graydon, O., Sensing: Giant Laser Gyroscope Detects Earth’s Wobble, Nature Photonics, 2012, vol. 6, no. 1, pp. 12–13.

    Article  Google Scholar 

  22. Geiger, R., Ménoret, V., Stern, G., Zahzam, N., Cheinet, P., Battelier, B., Villing, A., Moron, F., Lours, M., Bidel, Y., Bresson, A., Landragin, A., and Bouyer, P., Detecting Inertial Effects with Airborne Matter-Wave Interferometry, Nature Communications 2, Article number: 474; doi: 10.1038/ncomms1479

  23. www.muquans.com

  24. http://esamultimedia.esa.int/docs/HYPER-Report.pdf

  25. Bosi, F., et al., Measuring Gravito-Magnetic Effects by Multi Ring-Laser Gyroscope, Phys. Rev. D, 2011, vol. 84, no. 12, 122002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouyer, P. The centenary of Sagnac effect and its applications: From electromagnetic to matter waves. Gyroscopy Navig. 5, 20–26 (2014). https://doi.org/10.1134/S2075108714010039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108714010039

Keywords

Navigation