Skip to main content
Log in

Corrosion inhibition of stainless steel type 316L in hydrochloric acid solution using p-aminoazobenzene derivatives

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The inhibiting action of some p-aminoazobenzene derivatives towards the corrosion behavior of stainless steel type 316L in 3M HCl has been studied using weight loss, galvanostatic and potentiodynamic anodic polarization techniques. The inhibition efficiency of the investigated compounds was found to increase with increasing the concentration of inhibitor and with decreasing the temperature. The addition of KI to p-aminoazobenzene derivatives increased the inhibition efficiency due to synergistic effect. The presence of iodide ions in the solution stabilized the adsorption of these compounds on the steel surface and, therefore, improved the inhibition efficiency. Inhibition process was explained on the basis of adsorption of these compounds on the metal surface. The degree of surface coverage varied linearly with logarithm of inhibitor concentration fitting Temkin isotherm. Some thermodynamic parameters were calculated and discussed. It was found that, the p-aminoazobenzene derivatives provide a good protection to stainless steel against pitting corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait Albrimi, Y., Eddib, A., Douch, J., Berghoute, Y., Hamdani, M., and Souto, R.M., Int. J. Electrochem. Soc., 2011, vol. 6, p. 4614.

    Google Scholar 

  2. Java Her Dashti, R., Anti-Corros. Methods Mater., 2000, vol. 47, p. 30.

    Article  Google Scholar 

  3. Elachouri, M., Infante, M.R., Izqnierdo, F., Kerti, S., Gonttaya, H.M., and Nciri, B., Corros. Sci., 2001, vol. 43, p. 19.

    Article  Google Scholar 

  4. Galal, A., Alta, N.F., and Hasan, M.H.S. Al., Mater. Chem. Phys., 2005, vol. 89, p. 28.

    Article  Google Scholar 

  5. Abdallah, M., Corros. Sci., 2002, vol. 44, p. 717.

    Article  Google Scholar 

  6. Abdallah, M., Mater. Chem. Phys., 2003, vol. 82, p. 786.

    Article  Google Scholar 

  7. Abdallah, M., Eletre, A.Y., Soliman, M.G., and Mabrouk, E.M., Mater. Methods, 2006, vol. 53, p. 118.

    Google Scholar 

  8. Hermas, A.A., Morad, M.S., and Wahdan, M.H., J. Appl. Electrochem., 2004, vol. 34, p. 95.

    Article  Google Scholar 

  9. Abdallah, M., Helal, E.A., and Fouda, A.S., Corros. Sci., 2006, vol. 48, p. 1639.

    Article  Google Scholar 

  10. Refaey, S.A.M., Taha, F., and Abd El-Malak, A.M., Appl. Surf. Sci., 2004, vol. 236, p. 175.

    Article  Google Scholar 

  11. Abdallah, M., Zaafarany, I., Khairou, K.S., and Ema, Y., Chem. Technol. Fuels Oils, 2012, vol. 48, p. 234

    Article  Google Scholar 

  12. Abdallah, M., Asghar, B.H., Zaafarany, I., and Sobhi, M., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, p. 485.

    Article  Google Scholar 

  13. Sobhi, M., Abdallah, M., and Khairou, K.S., Monatsh. Chem., 2012, vol. 143, p. 1379.

    Article  Google Scholar 

  14. Zadeh, A.R., Danaee, I., and Maddahy, M.H., J. Mater. Sci. Technol., 2013, vol. 29, p. 884.

    Article  Google Scholar 

  15. El-Etre, A.Y., Corros. Sci., 2003, vol. 45, p. 2485.

    Article  Google Scholar 

  16. El-Haleem, S.M., Abdel Fattah, A.A., and Tayor, W., Res. Mech., 1985, vol. 15, p 87.

    Google Scholar 

  17. Aramki, K. and Hackerman, N., J. Electrochem. Soc., 1969, vol. 116, p. 568.

    Article  Google Scholar 

  18. Aramki, K., Hagiwara, M., and Nishihara, H., Corros. Sci., 1987, vol. 27, p. 487.

    Article  Google Scholar 

  19. Abdallah, M., Atwa, S.T., Salem, M.M., and Fouda, A.S., Int. J. Electrochem. Soc., 2013, vol. 8, p. 10001.

    Google Scholar 

  20. Putilova, I., Balezin, S., Barannik, I.N., and Bioshop, V.P., in Metallic Corrosion Inhibitors Oxford: Pergamon, 1960, p. 196.

    Google Scholar 

  21. Marsh, J., Advanced Organic Chemistry, New Delhi: Wiley, 1988, 3d ed.

    Google Scholar 

  22. Abd El-Rehim, S.S., Ibrahim, M.A.M., and Khaled, K.F., J. Appl. Electrochem., 1999, vol. 29, p. 593.

    Article  Google Scholar 

  23. Abdallah, M., Karane, S.A. Al., and Abdel Fattah, A.A., Chem. Eng. Comm., 2010, vol. 197, p. 1446.

    Article  Google Scholar 

  24. Abdallah, M., Al-Agez, M. and Fouda, A.S., Int. J. Electrochem. Sci., 2009, vol. 4, p. 336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdallah.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, M., Hazazi, O.A., Fouda, A.S. et al. Corrosion inhibition of stainless steel type 316L in hydrochloric acid solution using p-aminoazobenzene derivatives. Prot Met Phys Chem Surf 51, 473–480 (2015). https://doi.org/10.1134/S2070205115030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115030028

Keywords

Navigation