Skip to main content
Log in

Growth of nanowires on the surfaces of multicomponent oxide coatings on titanium

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The thermal behavior of Ni- and Cu-containing coatings on titanium formed by plasma electrolytic oxidation and additionally modified with nickel and copper oxides is studied. Annealing of the produced multiphase coatings in air at a temperature of 750°C or higher is shown to result in the growth of surface nanowires, the main components of which are nickel, oxygen, and titanium. The sizes of nanowires depend on the temperature of annealing, and the diameters can be as large as tens or hundreds of nanometers at a length of several to tens of microns. Experimental and literature data show that the combination of plasma electrolytic oxidation with impregnation and annealing is promising for the production of both nanowires bound to metal-oxide substrates and individual nanostructures of certain compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishizawa, H. and Ogino, M., J. Biomed. Mater. Res., 1995, vol. 29, no. 1, p. 65.

    Article  Google Scholar 

  2. Song, W.H., Ryu, H.S., and Hong, S.H., J. Biomed. Mater. Res., Part A 2009, vol. 88, no. 1, p. 246.

    Article  Google Scholar 

  3. Jin, F.Y., Tong, H.H., Li, J., et al., Surf. Coat. Technol., 2006, vol. 201, nos. 1–2, p. 292.

    Article  Google Scholar 

  4. Rudnev, V.S., Ustinov, A.Yu., Lukiyanchuk, I.V., et al., Dokl. Phys. Chem., 2009, vol. 428, p.189, Part 1.

    Article  Google Scholar 

  5. Patcas, F. and Krysmann, W., Appl. Catalysis, A, 2007, vol. 16, p. 240.

    Article  Google Scholar 

  6. Rudnev, V.S., Tyrina, L.M., Ustinov, A.Yu., et al., Kinet. Catal., 2010, vol. 51, no. 2, p. 266.

    Article  Google Scholar 

  7. Vasil’eva, M.S., Rudnev, V.S., and Ustinov, A.Yu., Russ. J. Inorg. Chem., 2009, vol. 54, no. 11, p. 1708.

    Article  Google Scholar 

  8. Liu, D.J., Jiang, B.L., Zhai, M., and Li, Q., Mater. Sci. Forum, 2011, vol. 695, p. 21.

    Article  Google Scholar 

  9. Rudnev, V.S., Vasil’eva, M.S., Yarovaya, T.P., and Malyshev, I.V., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, p. 2040.

    Article  Google Scholar 

  10. Rudnev, V.S., Malyshev, I.V., Lukiyanchuk, I.V., and Kuryavyi, V.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 455.

    Article  Google Scholar 

  11. Vasil’eva, M.S., Rudnev, V.S., Kondrikov, N.B., et al., Khimiya Interes. Ustoich. Razvitiya, 2012, vol. 20, no. 2, p. 173.

    Google Scholar 

  12. Vasil’eva, M.S. and Rudnev, M.S., Russ. J. Appl. Chem., 2012, vol. 85, no. 4, p. 575.

    Article  Google Scholar 

  13. Wiedenmann, F., Hein, D., and Krumm, W., Proc. 18th Europ. Biomass Conf. and Exhibition, France, Lyon, 2010, p. 704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rudnev.

Additional information

Original Russian Text © V.S. Rudnev, S. Wybornov, I.V. Lukiyanchuk, I.V. Chernykh, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 2, pp. 174–177.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudnev, V.S., Wybornov, S., Lukiyanchuk, I.V. et al. Growth of nanowires on the surfaces of multicomponent oxide coatings on titanium. Prot Met Phys Chem Surf 50, 191–194 (2014). https://doi.org/10.1134/S2070205114020130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114020130

Keywords

Navigation