Skip to main content
Log in

A local mean value theorem for functions on non-archimedean field extensions of the real numbers

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

In this paper, we review the definition and properties of locally uniformly differentiable functions on N, a non-Archimedean field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. Then we define and study n-times locally uniform differentiable functions at a point or on a subset of N. In particular, we study the properties of twice locally uniformly differentiable functions and we formulate and prove a local mean value theorem for such functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Berz, “Calculus and numerics on Levi-Civita fields,” in Computational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss and A. Griewank, editors, 19–35 (SIAM, Philadelphia, 1996).

    Google Scholar 

  2. H. Hahn, “Über die nichtarchimedischen Größensysteme,” Sitzungsbericht der Wiener Akademie der Wissenschaften Abt. 2a 117, 601–655 (1907).

    MATH  Google Scholar 

  3. W. Krull, “Allgemeine Bewertungstheorie,” J. Reine Angew.Math. 167, 160–196 (1932).

    MathSciNet  MATH  Google Scholar 

  4. T. Levi-Civita, “Sugli infiniti ed infinitesimi attuali quali elementi analitici,” Atti Ist. Veneto di Sc., Lett. ed Art. 7a, 4, 1765 (1892).

    MATH  Google Scholar 

  5. T. Levi-Civita, “Sui numeri transfiniti,” Rend. Acc. Lincei 5a, 7 (91), 113 (1898).

    MATH  Google Scholar 

  6. S. MacLane, “The universality of formal power series fields,” Bull. Amer.Math. Soc. 45, 888 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Priess-Crampe, Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen (Springer, Berlin, 1983).

    Book  MATH  Google Scholar 

  8. F. J. Rayner, “Algebraically closed fields analogous to fields of Puiseux series,” J. London Math. Soc. 8, 504–506 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Ribenboim, “Fields: Algebraically closed and others,” Manuscr. Math. 75, 115–150 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Robinson, Non-Standard Analysis (North-Holland, 1974).

    Google Scholar 

  11. W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis (Cambridge Univ. Press, 1985).

    Book  MATH  Google Scholar 

  12. Ya. D. Sergeyev, “Numerical point of view on calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains,” Nonlin. Anal. Ser. A: Theo.Meth. Appl. 71 (12), 1688–1707 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ya. D. Sergeyev, “Higher order numerical differentiation on the infinity computer,” Optim. Lett. 5 (4), 575–585 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ya. D. Sergeyev, “Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer,” Appl.Math. Comput. 219 (22), 10668–10681 (2013).

    MathSciNet  MATH  Google Scholar 

  15. K. Shamseddine, “Analysis on the Levi-Civita field and computational applications,” J. Appl. Math. Comp. 255, 44–57 (2015).

    Article  MathSciNet  Google Scholar 

  16. K. Shamseddine and M. Berz, “Exception handling in derivative computation with non-Archimedean calculus,” in Computational Differentiation: Techniques, Applications and Tools, M. Berz, C. Bischof, G. Corliss and A. Griewank, editors, 37–51 (SIAM, Philadelphia, 1996).

    Google Scholar 

  17. K. Shamseddine and M. Berz, “Analysis on the Levi-Civita field, a brief overview,” Contemp. Math. 508, 215–237 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Shamseddine, T. Rempel and T. Sierens, “The implicit function theorem in a non-Archimedean setting,” Indag. Math. (N.S.) 20(4), 603–617 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Shamseddine and T. Sierens, “On locally uniformly differentiable functions on a complete non-Archimedean ordered field extension of the real numbers,” ISRN Math. Anal. 2012, 20 pages (2012).

  20. N. Vakil, Real Analysis through Modern Infinitesimals (Cambridge Univ. Press, 2011).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shamseddine.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamseddine, K., Bookatz, G. A local mean value theorem for functions on non-archimedean field extensions of the real numbers. P-Adic Num Ultrametr Anal Appl 8, 160–175 (2016). https://doi.org/10.1134/S2070046616020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046616020059

Keywords

Navigation