Skip to main content
Log in

On positive definiteness of some radial functions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the functions h μ,ν introduced by Zastavnyi in 2002. The family of these functions is a subfamily of Buhmann’s functions and contains the families of functions introduced by Trigub in 1987 and Wendland in 1995. We investigate the problems of positive definiteness and smoothness at zero for the linear combinations β ε2 h μ,ν (x/β 2) − β ε1 μ,ν (x/β 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Askey, “Radial characteristic functions,” Technical Report (Univ. of Winsconsin, 1973).

    MATH  Google Scholar 

  2. R. Askey and H. Pollard, “Some absolutely monotonic and completely monotonic functions,” SIAM J. Math. Anal. 5, 58–63 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Berg, E. Porcu, and J. Mateu, “The Dagum family of completely monotonic functions,” Bernoulli 14, 1134–1149 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bevilacqua, T. Faouzi, R. Furrer, and E. Porcu, “Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics,” Technical Report (Univ. of Valparaiso); arXiv:1607.06921.

  5. M. D. Buhmann, “A new class of radial basis functions with compact support,” Math. Comput. 70 (233), 307–318 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. J. Daley and E. Porcu, “Dimension walks through Schoenberg spectralmeasures,” Proc. Am. Math. Soc. 142, 1813–1824 (2014).

    Article  MATH  Google Scholar 

  7. D. J. Daley, E. Porcu, and M. Bevilacqua, “Classes of compactly supported covariance functions for multivariate random fields,” Stoch. Environ. Res. Risk Assess. 29, 1249–1263 (2015).

    Article  Google Scholar 

  8. W. Feller, “Completely monotone functions and sequences,” Trans. Am. Math. Soc. 5, 661–674 (1939).

    MathSciNet  MATH  Google Scholar 

  9. J. L. Fields and M. E. H. Ismail, “On the positivity of some 1F2’a,” SIAM J. Math. Anal. 6, 551–559 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Furrer, M. Genton, and D. Nychka, “Covariance tapering for interpolation of large spatial datasets,” J. Comput. Graph. Stat. 15, 502–523 (2006).

    Article  MathSciNet  Google Scholar 

  11. T. Gneiting, “Curiosities of characteristic functions,” Expo. Math. 19, 359–363 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Gneiting, “Compactly supported correlation functions,” J. Multivar. Anal. 83, 493–508 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Matheron, Les variables régionalisées et leur estimation (Masson, Paris, 1965).

    Google Scholar 

  14. D. Moak, “Completely monotonic functions of the form s-b(s2 +1)-a,” Rocky Mount. J. Math. 17, 719–725 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Porcu, ”Geostatica spazio-temporale: nuove classi di covarianza, variogramma e densit spettrali,” Doctoral Thesis (Univ. of Milano Bicocca,Milano, 2004).

    Google Scholar 

  16. E. Porcu and V. P. Zastavnyi, “Generalized Askey functions and their walks through dimensions,” Expo. Math. 32, 190–198 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ramachandran, “Characteristic functions taking constant values on intervals of the real line,” Stat. Probab. Lett. 28, 269–270 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Sasvari, Multivariate Characteristic and Correlation Functions (De Gruyter, Berlin, 2013).

    Book  MATH  Google Scholar 

  19. R. Schaback and H. Wendland, “Kernel techniques: from machine learning to meshless methods,” Acta Numer. 15, 543–639 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions (De Gruyter, Berlin, Boston, 2010).

    MATH  Google Scholar 

  21. I. J. Schoenberg, “Metric spaces and completely monotone functions,” Ann. Math. 39, 811–841 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Shen, M. Ostoja-Starzewski, and E. Porcu, “Harmonic oscillator driven by random processes having fractal and Hurst effects,” Acta Mech. 226, 3653–3672 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. L. Stein, Interpolation of Spatial Data. Some Theory of Kriging (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  24. R. M. Trigub, “Positive-definite compactly supported radial functions of polynomial form and maximal smoothness,” Mat. Fiz. Anal. Geom. 9, 394–400 (2002).

    MathSciNet  MATH  Google Scholar 

  25. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions (Kluwer, Springer, Boston, Dordrecht, London, 2004).

    Book  Google Scholar 

  26. R. M. Trigub, “On the Fourier transform of function of two variables which depend only on the maximum of these variables,” arxiv:1512. 03183.

  27. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1944).

    MATH  Google Scholar 

  28. H. Wackernagel, Multivariate Geostatistics: An Introduction with Applications (Springer Science, New York, 2003).

    Book  MATH  Google Scholar 

  29. H. Wendland, “Piecewise polinomial, positive definite and compactly supported radial functions of minimal degree,” Adv. Comp. Math. 4, 389–396 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. V. Widder, The Laplace Transform (Princeton Univ. Press, Princeton, 1946).

    MATH  Google Scholar 

  31. Z. Wu, “Compactly supported positive definite radial functions,” Adv. Comput. Math. 4, 283–292 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. P. Zastavnyi, “On positive definiteness of some functions,” J. Multivar. Anal. 73, 55–81 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. P. Zastavnyi, “Positive-definite radial functions and splines,” Dokl. Math. 66, 213–216 (2002).

    MathSciNet  MATH  Google Scholar 

  34. V. P. Zastavnyi and R. M. Trigub, “Positive-definite splines of a special form,” Sbornik: Math. 193, 1771–1800 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  35. V. P. Zastavnyi, “On some properties of Buhmann functions,” Ukr. Math. J. 58, 1184–1208 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. V. P. Zastavnyi, “On exponential type entire functions without zeros in the open lower half-plane,” Ukr. Math. Bull. 3, 395–422 (2006); arXiv:1606. 08255.

    MathSciNet  MATH  Google Scholar 

  37. V. P. Zastavnyi, “Problems related to positive definite functions,” in Positive Definite Functions: from Schoenberg to Space-Time Challenges, Ed. by J. Mateu and E. Porcu (Editorial Univ. Jaume I, Castelló, Spain, 2008), pp. 63–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zastavnyi.

Additional information

Submitted by F. G. Avkhadiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zastavnyi, V.P., Porcu, E. On positive definiteness of some radial functions. Lobachevskii J Math 38, 386–394 (2017). https://doi.org/10.1134/S1995080217020226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217020226

Keywords and phrases

Navigation