Skip to main content
Log in

Study of mutagenic and cytotoxic effects of multiwalled carbon nanotubes and activated carbon in six organs of mice in vivo

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Mutagenic and cytotoxic effects of multiwalled carbon nanotubes (MWCNTs) and activated carbon in low doses (0.028 and 0.074 mg/kg) were studied for the first time in an experiment on mice in vivo when administered with drinking water for 2 weeks. We studied Taunit MWCNTs with an outer diameter of 15–40 nm, inner diameter of 3–8 nm, length of 2 μm or more, and specific geometrical surface of 0.4–0.5 m2/g and Flotosorb A activated carbon, powdered carbon with a particle size of less than 0.1 mm. Suspensions of nanomaterials were investigated after ultrasonic homogenization using a multiorgan karyological test with an analysis of cytogenetic damages, proliferation, and apoptosis in isolated cells of several organs. The mutagenic effects of MWCNTs and active carbon were detected in cells of the forestomach and lungs, respectively. The cytotoxic effect of both substances was found in the epithelium of the forestomach, small intestine, bladder, and bone-marrow and lung cells according to changes in biomarkers of proliferation and/or destruction of the cell nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9 (6), 674 (2005).

    Article  Google Scholar 

  2. C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, Crit. Rev. Toxicol. 36 (3), 189–217 (2006).

    Article  Google Scholar 

  3. J. Kolosnjaj-Tabi, K. B. Hartman, S. Boudjemaa, J. S. Ananta, G. Morgant, H. Szwarc, L. J. Wilson, and F. Moussa, ACS Nano. 4 (3), 1481 (2010).

    Article  Google Scholar 

  4. V. K. Prajapati, K. Awasthi, T. P. Yadav, M. Rai, O. N. Srivastava, and S. Sundar, J. Infect. Dis. 205 (2), 333 (2012).

    Article  Google Scholar 

  5. R. F. Service, Science 300, 243 (2003).

    Article  Google Scholar 

  6. A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, et al., J. Toxicol. Environ. Health A 66, 1909 (2003).

    Article  Google Scholar 

  7. C. S. Sharma, S. Sarkar, A. Periyakaruppan, J. Barr, K. Wise, et al., J. Nanosci. Nanotechnol. 7, 2466 (2007).

    Article  Google Scholar 

  8. E. R. Kisin, A. R. Murray, O. Gorelik, S. Arepalli, et al., Toxicol. Appl. Pharmacol. 221, 339 (2007).

    Article  Google Scholar 

  9. N. A. Monteiro-Riviere, A. O. Inman, Y. Y. Wang, and R. J. Nemanich, Nanomedicine 1, 293 (2005).

    Article  Google Scholar 

  10. D. Cui, F. Tian, C. S. Ozkan, M. Wang, and H. Gao, Toxicol. Lett. 155, 73 (2005).

    Article  Google Scholar 

  11. S. K. Manna, S. Sarkar, J. Barr, K. Wise, E. V. Barrera, et al., Nano. Lett. 5, 1676 (2005).

    Article  Google Scholar 

  12. M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucc, et al., Toxicol. Lett. 160, 121 (2006).

    Article  Google Scholar 

  13. Y. M. Zhou and C. Y. Zhong, Toxicol. Appl. Pharmacol. 190 (2), 157 (2003).

    Article  Google Scholar 

  14. J. Muller, F. Huaux, N. Moreau, P. Misson, J. F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, and D. Lison, Toxicol. Appl. Pharmacol. 207 (3), 221 (2005).

    Article  Google Scholar 

  15. C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, Toxicol. Sci. 77, 126 (2004).

    Article  Google Scholar 

  16. J. Muller, F. Huaux, A. Fonseca, J. B. Nagy, N. Moreau, M. Delos, E. Raymundo-Piñero, F. Béguin, M. Kirsch-Volders, I. Fenoglio, B. Fubini, and D. Lison, Chem. Res. Toxicol. 21 (9), 1698 (2008).

    Article  Google Scholar 

  17. A. Shvedova, N. Yanamala, E. Kisin, A. Tkach, A. Murray, A. Hubbs, M. Chirila, P. Keohavong, L. Sycheva, V. Kagan, and V. Castranova, Am. J. Physiol. Lung Cell Mol. Physiol. 306 (2), L170 (2014).

    Article  Google Scholar 

  18. C. Buzea, I. I. Pacheco, and K. Robbie, Biointerphases 4, MR17–71 (2007).

    Google Scholar 

  19. K. Szendi and C. Varga, Anticancer Res. 28 (1A), 349 (2008).

    Google Scholar 

  20. J. K. Folkmann, L. Risom, N. R. Jacobsen, H. Wallin, S. Loft, and P. Møller, Environ. Health Perspect. 117 (5), 703 (2009).

    Article  Google Scholar 

  21. J. H. Lim, S. H. Kim, I. C. Lee, C. Moon, S. H. Kim, D. H. Shin, H. C. Kim, and J. C. Kim, Environ. Health Toxicol. 26, e2011006 (2011).

    Article  Google Scholar 

  22. N. A. Philbrook, V. K. Walker, A. R. Afrooz, N. B. Saleh, and L. M. Winn, Toxicol. Reprod. 32 (4), 442 (2011).

    Article  Google Scholar 

  23. S. Toyokuni, Adv. Drug Deliv. Rev. 65 (15), 2098 (2013).

    Article  Google Scholar 

  24. A. K. Patlolla, S. M. Hussain, J. J. Schlager, S. Patlolla, and P. B. Tchounwou, Toxicol. Environ. 25 (6), 608 (2010).

    Article  Google Scholar 

  25. M. Naya, N. Kobayashi, K. Mizuno, K. Matsumoto, M. Ema, and J. Nakanishi, Regul. Toxicol. Pharmacol. 61 (2), 192 (2011).

    Article  Google Scholar 

  26. M. Ema, T. Imamura, H. Suzuki, N. Kobayashi, M. Naya, and J. Nakanishi, “Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays,” Regul. Toxicol. Pharmacol. 63 (2), 188 (2012).

    Article  Google Scholar 

  27. Estimation of Environmental Factors Mutagenic Activity in Different Mammal Cells Using Micronucleus Test. Methodological Recommendations, Ed. by Yu. A. Rakhmanin (Moscow, 2001) [in Russian].

  28. Multiorgan Micronucleus Test in Ecological and Environmental Health Studies, Ed. by Yu. A. Rakhmanin and L. P. Sycheva (Genius, Moscow, 2007) [in Russian].

  29. W. Schmid, Mutat. Res. 31, 9 (1975).

    Article  Google Scholar 

  30. L. P. Sycheva, Med. Genet., No. 11, 3 (2007).

    Google Scholar 

  31. K. J. Siegrist, S. H. Reynolds, M. L. Kashon, D. T. Lowry, C. Dong, A. F. Hubbs, S. H. Young, J. L. Salisbury, D. W. Porter, S. A. Benkovic, M. McCawley, M. J. Keane, et al., Part Fiber Toxicol. 11 (1), 6 (2014).

    Article  Google Scholar 

  32. N. N. Belyaeva, R. I. Mikhailova, L. P. Sycheva, O. N. Savostikova, E. A. Zelenkina, Z. M. Gasimova, A. V. Alekseeva, I. N. Ryzhova, and A. A. Altaeva, Gig. Sanit., No. 6, 58 (2012).

    Google Scholar 

  33. R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, and K. Kostarelos, Proc. Natl. Acad. Sci. U.S.A. 103, 3357 (2006).

    Article  Google Scholar 

  34. S. Y. Madani, A. Mandel, and A. M. Seifalian, Nano Rev. 4, 21521 (2013). doi: 10.3402/nano.v4i0.21521

    Google Scholar 

  35. G. Liang, L. Yin, J. Zhang, R. Liu, T. Zhang, B. Ye, and Y. J. Pu, Toxicol. Environ. Health A 73 (7), 463 (2010).

    Article  Google Scholar 

  36. Y. Bai, Y. Zhang, J. Zhang, Q. Mu, W. Zhang, E. R. Butch, S. E. Snyder, and B. Yan, Nat Nanotechnol. 5 (9), 683 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Sycheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, L.P., Mikhailova, R.I., Belyaeva, N.N. et al. Study of mutagenic and cytotoxic effects of multiwalled carbon nanotubes and activated carbon in six organs of mice in vivo. Nanotechnol Russia 10, 311–317 (2015). https://doi.org/10.1134/S1995078015020184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015020184

Keywords

Navigation