Skip to main content
Log in

Investigation of volatile aliphatic and aromatic amine detection using a fluorescent pH indicator ethyl eosin in polymer matrices

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Changes in the fluorescence spectra (F) of ethyl eosin (EE) embedded into polymer matrices of different compositions, gas permeability, and polarity under the action of gaseous aliphatic and aromatic amines (dimethylamine (DMA), trimethylamine (TMA), and pyridine (Pyr)), depending on the pH and the structure of polymer matrix, were investigated. Organic methanesulfonic acid was used to adjust pH in a polymer matrix. Cellulose acetate-propionate (CAP), polyvinyl trimethylsilane (PVTMS), polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP), as well as mesoporous silica gel microspheres, were used as polymer matrices. Absorption and fluorescence maxima of EE in solution and in most polymers are in the region of 505 nm and 550 nm, respectively. The maximum of EE fluorescence intensity increases in all polymer matrices except for PVP in the presence of amines, while the F decreases in the PVP matrix and silica gel microspheres. The fluorescence response to DMA is higher than to TMA and Pyr for all the polymers; the F response is two-phase in the case of Pyr: an increase in F followed by a decrease. Characteristic response times for different matrices change in a sequence: CAP < PVP < PEO < MS < PVTMS. These differences are probably due to the different contributions to the process of the analyte diffusion, its affinity to the polymer, and the internal polarity of the polymer matrix for different polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. L. Gong, K. J. Sears, J. E. Alleman, and E. R. Blatchley, “Toxicity of model aliphatic amines and their chlorinated forms,” Environ. Toxicol. Chem. 23(2), 239–244 (2004).

    Article  Google Scholar 

  2. B. Timmer, W. Olthuis, and A. van den Berg, “Ammonia sensors and their applications-a review,” Sen. Actuators 107(2), 666–677 (2005).

    Article  Google Scholar 

  3. K. Tsubaki, D. Tanima, and K. Fuji, “Colorimetric recognition based on functional phenolphthalein derivatives,” J. Synthet. Organ. Chem. Jpn. 69(3), 266–277 (2011).

    Article  Google Scholar 

  4. M. Krizek, F. Vacha, L. Vorlova, J. Lukasova, and S. Cupakova, “Biogenic amines in vacuum-packed and nonvacuum-packed flesh of carp (Cyprinus Carpio) stored at different temperatures,” Food Chem. 88(2), 185–191 (2004).

    Article  Google Scholar 

  5. C. Ruiz-Capillas and F. Jimenez-Colmenero, “Biogenic amines in meat and meat products,” Crit. Rev. Food Sci. Nutrition 44(7–8), 489–499 (2004).

    Google Scholar 

  6. J. F. Giuliani, H. Wohltjen, and N. L. Jarvis, “Reversible optical-waveguide sensor for ammonia vapors,” Opt. Lett. 8(1), 54–56 (1983).

    Article  Google Scholar 

  7. T. Mayr, K. Waich, and I. Klimant, “Fluorescence sensors for trace monitoring of dissolved ammonia,” Talanta 77(1), 66–72 (2008).

    Article  Google Scholar 

  8. K. I. Oberg, R. Hodyss, and J. L. Beauchamp, “Simple optical sensor for amine vapors based on dyed silica microspheres,” Sens. Actuators 115(1), 79–85 (2006).

    Article  Google Scholar 

  9. J. Courbat, D. Briand, J. Damon-Lacoste, J. Wollenstein, and N. F. de Rooij, “Evaluation of PH indicator-based colorimetric films for ammonia detection using optical waveguides,” Sens. Actuators 143(1), 62–70 (2009).

    Article  Google Scholar 

  10. D. Escudero, S. Trupp, B. Bussemer, G. J. Mohr, and L. Gonzalez, “Spectroscopic properties of azobenzene-based PH indicator dyes: a quantum chemical and experimental study,” J. Chem. Theory Comput. 7(4), 1062–1072 (2011).

    Article  Google Scholar 

  11. D. Staneva, R. Betcheva, and J. M. Chovelon, “Optical sensor for aliphatic amines based on the simultaneous colorimetric and fluorescence responses of smart textile,” J. Appl. Polym. Sci. 106(3), 1950–1956 (2007).

    Article  Google Scholar 

  12. M. R. Shahriari, Q. Zhou, and G. H. Sigel, “Porous optical fibers for high-sensitivity ammonia-vapor sensors,” Opt. Lett. 13(5), 407–409 (1988).

    Article  Google Scholar 

  13. D. Staneva, R. Betcheva, and J. M. Chovelon, “Fluorescent benzo[de]anthracen-7-one pH-sensor in aqueous solution and immobilized on viscose fabrics,” J. Photochem. Photobiol. A: Chem. 183(1–2), 159–164 (2006).

    Article  Google Scholar 

  14. Z. L. Tang, J. H. Yang, J. Y. Yu, and B. Cui, “A colorimetric sensor for qualitative discrimination and quantitative detection of volatile amines,” Sensors 10(7), 6463–6476 (2010).

    Article  Google Scholar 

  15. S. Q. Tao, L. Xu, and J. C. Fanguy, “Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,” Sens. Actuators 115(1), 158–163 (2006).

    Article  Google Scholar 

  16. J. M. Charlesworth and C. A. McDonald, “A fibreoptic fluorescing sensor for amine vapours,” Sens. Actuators 8, 137–142 (1992).

    Article  Google Scholar 

  17. R. H. Yang, K. M. Wang, and D. Xiao, “A host-guest optical sensor for aliphatic amines based on lipophilic cyclodextrin,” Fresenius J. Anal. Chem. 367, 429–435 (2006).

    Article  Google Scholar 

  18. X. Zhang, X. Liu, R. Lu, H. Zhang, and P. Gong, “Fast detection of organic amine vapors based on fluorescent nanofibrils fabricated from triphenylamine functionalized beta-diketone-boron difluoride,” J. Mater. Chem. 22, 1167 (2012).

    Article  Google Scholar 

  19. Ha Na Kim, K. M. K. Swamy, and Juyoung Yoon, “Study on various fluorescein derivatines as pH sensors,” Tetrahedron Lett. 52, 2340–2343 (2011).

    Article  Google Scholar 

  20. Li-jun Ma, W. Cao, J. Liu, D. Deng, Y. Wu, Y. Yan, and L. Yang, “A highly selective and sensitive fluorescence dual-responsive pH probe in water,” Sen. Actuators B: Chem. 169, 243–247 (2012).

    Article  Google Scholar 

  21. X. Zhang, X. Liu, R. Lu, H. Zhang, and P. Gong, “Fast detection of organic amine vapors based on fluorescent nanofibrils fabricated from triphenylamine functionalized beta-diketone-boron difluoride,” J. Mater. Chem. 22, 1167 (2012).

    Article  Google Scholar 

  22. B. B. Meshkov, I. V. Ionova, V. P. Tsybyshev, M. V. Alfimov, and V. A. Livshits, “Complexation of a gaseous spin probe with cyclodextrins bound to the silica microspheres: molecular dynamics of the complexed probes and the effect of aromatic hydrocarbon vapors on it,” Nanotech. Russ. 8(7-8), 592 (2013).

    Google Scholar 

  23. K. Waich, T. Mayr, and I. Klimant, “Microsensors for detection of ammonia at ppb-concentration levels,” Measur. Sci. Technol. 18(10), 3195–3201 (2007).

    Article  Google Scholar 

  24. L. V. Voronina, V. A. Livshits, and M. V. Alfimov, “Studies of possibility of detecting aromatic hydrocarbons in gas phase on the basis of fluorescence of host-guest complexes with cyclodextrins immobilized on silica microspheres,” Nanotechnol. Russ., No. 7–8, 444–455 (2011).

    Google Scholar 

  25. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, Data for Biochemical Research, 3rd ed. (Clarendon Press, Oxford, 1986).

    Google Scholar 

  26. V. A. Rabinovich and Z. Ya. Khavin, Brief Chemical Handbook (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  27. Ionization Constants of Inorganic Acids and Bases in Aqueous Solution, Ed. by D. D. Perrin (Pergamon Press, Oxford, 1982).

    Google Scholar 

  28. H. K. Hall, “Correlation of the base strengths of amines1,” J. Am. Chem. Soc. 79(20), 5441–5444 (1957).

    Article  Google Scholar 

  29. R. Linnell, “Notes-dissociation constants of 2-substituted pyridines,” J. Organ. Chem. 25(2), 290–290 (1960).

    Article  Google Scholar 

  30. A. A. Khlebunov, D. S. Ionov, P. V. Komarov, V. M. Aristarkhov, V. A. Sazhnikov, A. N. Petrov, and M. V. Alfimov, “Experimental complex for researching characteristics of optical sensor materials,” Prib. Tekh. Eksp., No. 1, 1–6 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Livshits.

Additional information

Original Russian Text © B.B. Meshkov, D.S. Ionov, A.V. Koshkin, M.V. Alfimov, V.A. Livshits, 2014, published in Rossiiskie Nanotekhnologii, 2014, Vol. 9, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshkov, B.B., Ionov, D.S., Koshkin, A.V. et al. Investigation of volatile aliphatic and aromatic amine detection using a fluorescent pH indicator ethyl eosin in polymer matrices. Nanotechnol Russia 9, 237–244 (2014). https://doi.org/10.1134/S1995078014030112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078014030112

Keywords

Navigation