Skip to main content
Log in

Supercritical fluid technologies in the chemistry of wood and its components

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The advantages of application of supercritical fluid technologies at the stages of complex wood and plant processing are analyzed based on the modern concept of lignin-carbohydrate matrix formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. G. Bogolitsyn, V. V. Lunin, D. S. Kosyakov, et al., Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Akademkniga, Moscow, 2010) [in Russian].

  2. K. Bogolitsyn, Cellulose and Cellulose Derivatives: Physico-Chemical Aspect and Industrial Applications (Woodhead, 1995), p. 499.

    Book  Google Scholar 

  3. K. G. Bogolitsyn, in Proceedings of the International Conference on Physicochemistry of Lignin (Arkhangel’sk, 2007), p. 16.

    Google Scholar 

  4. K. G. Bogolitsyn, D. G. Chukhchin, I. N. Zubov, and M. A. Gusakova, Khim. Rastit. Syr’ya, No. 3, 37 (2012).

    Google Scholar 

  5. A. P. Karmanov, Zh. Fiz. Khim. 77, 2277 (2003).

    Google Scholar 

  6. K. G. Bogolitsyn, Zh. Ros. Khim. Obshch. Mendeleeva 48 (6), 105 (2004).

    CAS  Google Scholar 

  7. J. Shi, L. S. Kassama, and Y. Kakuda, Functional Food and Nutraceuticals: Processing Technologies (CRC Press, Boca Raton, 2007), Ch. 1.

    Google Scholar 

  8. M. Angela and A. Meireles, Electron. J. Environ., Agricult. Food Chem. 7, 3254 (2008).

    CAS  Google Scholar 

  9. G. He, H. Xiong, Q. Chen, H. Ruan, Z. Wang, and L. Traore, J. Zhejiang Univ. Sci. 6, 999 (2005).

    Article  Google Scholar 

  10. V. Micic, Z. Lepojevic, M. Jotanoviae, G. Tadic, and B. Pejovic, J. Appl. Sci. 11, 3630 (2011).

    Article  CAS  Google Scholar 

  11. Patent WO 071755 (2012).

  12. A. M. Aliev and G. V. Stepanov, Sverkhkrit. Fluidy: Teor. Prakt. 1 (1), 101 (2006).

    Google Scholar 

  13. I. N. Glazkov, I. A. Revel’skii, S. V. Kuzyakin, M. P. Kuznetsov, A. A. Bogdanov, A. A. Martynov, I. P. Efimov, and Yu. A. Zolotov, Sverkhkrit. Fluidy: Teor. Prakt. 1 (1), 52 (2006).

    Google Scholar 

  14. A. V. Lekar’, S. N. Borisenko, E. V. Maksimenko, R. N. Borisenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 33 (2008).

    Google Scholar 

  15. O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, R. N. Borisenko, A. V. Lekar’, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 37 (2008).

    Google Scholar 

  16. I. N. Zilfikarov and A. M. Aliev, Sverkhkrit. Fluidy: Teor. Prakt. 3 (2), 43 (2008).

    Google Scholar 

  17. K. S. Tikhomirova, R. N. Borisenko, E. V. Vetrova, S. N. Borisenko, E. V. Maksimenko, N. I. Borisenko, and V. I. Minkin, Sverkhkrit. Fluidy: Teor. Prakt. 3 (3), 71 (2008).

    Google Scholar 

  18. V. F. Ur’yash, A. E. Gruzdeva, N. Yu. Kokurina, N. V. Grishatova, A. V. Ur’yash, and I. G. Karpova, Sverkhkrit. Fluidy: Teor. Prakt. 3 (4), 35 (2008).

    Google Scholar 

  19. O. I. Pokrovskii, A. A. Markoliya, F. D. Lepeshkin, I. V. Kuvykin, O. O. Parenago, and S. A. Gonchukov, Russ. J. Phys. Chem. B 3, 1165 (2009).

    Article  Google Scholar 

  20. V. F. Ur’yash, A. E. Gruzdeva, A. V. Ur’yash, A. A. Silkin, and N. Yu. Kokurina, Russ. J. Phys. Chem. B 4, 1097 (2010).

    Article  Google Scholar 

  21. K. S. Tikhomirova, A. V. Lekar, S. N. Borisenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 4, 1125 (2010).

    Article  Google Scholar 

  22. O. I. Krivonos and G. V. Plaksin, Russ. J. Phys. Chem. B 4, 1171 (2010).

    Article  Google Scholar 

  23. I. A. Platonov, N. V. Nikitchenko, L. A. Onuchak, Yu. I. Arutyunov, V. A. Kurkin, and P. V. Smirnov, Russ. J. Phys. Chem. B 4, 1211 (2010).

    Article  Google Scholar 

  24. S. N. Evstafyev, E. S. Fomina, and E. A. Privalova, Khim. Rastit. Syr’ya 4 (1), 15 (2011).

    Google Scholar 

  25. A. F. Dmitruk, Yu. O. Lesishina, and I. I. Volodchenko, Russ. J. Phys. Chem. B 6, 813 (2012).

    Article  CAS  Google Scholar 

  26. A. M. Aliev, G. K. Radjabov, and G. V. Stepanov, Russ. J. Phys. Chem. B 7, 795 (2013).

    Article  CAS  Google Scholar 

  27. A. V. Lekar, O. V. Filonova, S. N. Borisenko, E. V. Maksimenko, E. V. Vetrova, N. I. Borisenko, and V. I. Minkin, Russ. J. Phys. Chem. B 7, 829 (2013).

    Article  CAS  Google Scholar 

  28. V. G. Slutskii, V. N. Bagratashvili, L. I. Krotova, G. V. Mishakov, V. K. Popov, and S. A. Tsyganov, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 88 (2012).

    Google Scholar 

  29. R. L. Mendes, in Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds, Ed. by J. L. Martinez (CRC Press, Boca Raton, 2008), Ch. 6, p. 189.

  30. J. A. Gravitis, Wood Chem., No. 5, 3 (1987).

    Google Scholar 

  31. U. Kallavus and J. Gravitis, Khim. Drev., No. 6, 98 (1987).

    Google Scholar 

  32. D. S. Argyropoulos, A. Gaspar, and L. Lucia, O. J. Rojas, Chem. Ind. 8, 84 (2006).

    Google Scholar 

  33. K. G. Bogolitsyn, Sverkhkrit. Fluidy: Teor. Prakt. 2 (1), 16 (2007).

    Google Scholar 

  34. A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 3 (4), 45 (2008).

    Google Scholar 

  35. A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 5 (1), 52 (2010).

    Google Scholar 

  36. A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 5 (4), 15 (2010).

    Google Scholar 

  37. A. D. Ivakhnov, K. G. Bogolitsyn, and T. E. Skrebets, Sverkhkrit. Fluidy: Teor. Prakt. 6 (4), 8 (2011).

    Google Scholar 

  38. A. D. Ivakhnov, T. E. Skrebets, and K. G. Bogolitsyn, Russ. J. Phys. Chem. B 5, 1250 (2011).

    Article  CAS  Google Scholar 

  39. J. Liu and S. Wu, Delignification of Bamboo and Straw Using CO 2 Supercritical Fluid Extraction Technology (Linye Daxue Xuebao, Beijing, 2011).

    Google Scholar 

  40. C. Huang, Z. Li, and B. Wang, Preliminary Study on Supercritical Fluid Ammonia Pulping of Bamboo (Zhongguo Zaozhi, 2008).

    Google Scholar 

  41. E. Minami and S. Saka, J. Wood Sci. 51, 395 (2005).

    Article  CAS  Google Scholar 

  42. US Patent No. 8404051 B2 (2013).

  43. US Patent No. 0145094 A1 (2012).

  44. D. Argyropoulos, C. Saquing, A. Gaspar, N. Soriano, L. Lucia, and O. Rojas, ACS Symp. Ser. 954, 311 (2007).

    Article  CAS  Google Scholar 

  45. M. Xu, S. Zhang, T. Li, Z. Ren, and Y. Yan, Taiyangneng Xuebao 28, 805 (2007).

    CAS  Google Scholar 

  46. Z. Fang, T. Sato, R. Smith, H. Inomata, K. Arai, and J. Kozinski, Biores. Technol. 99, 3424 (2008).

    Article  CAS  Google Scholar 

  47. Q. Lu, Y. Zu, L. Yang, X. Zhao, W. Liu, and B. Zu, Adv. Mater. Res. 233–235, 1642 (2011).

    Article  Google Scholar 

  48. Y. Zu, L. Yang, Q. Lu, B. Zu, C. Zhao, X. Zhao, B. Zhang, Z. Sun, J. Zhang, L. Huang, Y. Zhang, and W. Sun, Method for Preparation of Nanosize Lignin by Superctirical Antisolvent Process (Faming Zhuanli Shenqing, 2011).

    Google Scholar 

  49. Wahyudiono and G. M. Mitsuru, Chem. Eng. Process. 47, 1609 (2008).

    Article  CAS  Google Scholar 

  50. Wahyudiono, S. Takayuki, and G. M. Mitsuru, Chem. Eng. Technol. 30, 1113 (2007).

    Article  CAS  Google Scholar 

  51. A. Liu, L. Meng, and Y. Haung, Chin. Synth. Fiber Industry 27 (3), 43 (2004).

    CAS  Google Scholar 

  52. L. Zheng, J. Liu, and D. Ma, Textile Res. 2, 11 (2004).

    Google Scholar 

  53. Y. Ogihara, R. Smith, H. Inomata, and K. Arai, Cellulose 12, 595 (2005).

    Article  CAS  Google Scholar 

  54. F. Rataboul and N. Essayem, Ind. Eng. Chem. Res. 50, 799 (2011).

    Article  CAS  Google Scholar 

  55. C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Preparation Method of Cellulose Carbamate by Using Supercritical Carbon Dioxide (Faming Zhuanli Shenqing Gongkai Shuomingshu, 2006).

    Google Scholar 

  56. C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Eur. Polym. J. 43, 2111 (2007).

    Article  CAS  Google Scholar 

  57. C. Yin, X. Shen, J. Li, Q. Xu, Q. Peng, and Y. Liu, Carbohydr. Polym. 67, 147 (2007).

    Article  CAS  Google Scholar 

  58. X. Liu, Z. Li, L. Jin, Y. Xia, and T. Meng, Polym. Mater. Sci. Eng. 6, 270 (2005).

    Google Scholar 

  59. A. R. C. Duarte, M. D. Gordillo, M. M. Cardoso, A. L. Simplicio, and C. M. M. Duarte, Int. J. Pharm. 311, 50 (2006).

    Article  CAS  Google Scholar 

  60. J. Li, Q. Ren, G. Sun, and H. Shen, Application of Ethyl Cellulose in Sustained-Release Drug Delivery Systems (Zhongguo Yaofang, 2008).

    Google Scholar 

  61. S. Berlioz, S. Molina-Boisseau, Y. Nishiyama, and L. Heux, Biomacromolecules 10, 2144 (2009).

    Article  CAS  Google Scholar 

  62. M. Matsunaga, Y. Kataoka, H. Matsunaga, and H. Matsui, J. Wood Sci. 56, 293 (2010).

    Article  CAS  Google Scholar 

  63. A. D. Ivakhnov, T. E. Skrebets, and K. G. Bogolitsyn, Sverkhkrit. Fluidy: Teor. Prakt. 7 (4), 82 (2012).

    Google Scholar 

  64. Y. Shi, G. He, W. Shi, W. Zhao, J. Ju, F. Nie, and F. Quan, Chem. Ind. Eng. Progress, No. 1, 121 (2009).

    Google Scholar 

  65. US Patent No. 6814914 B2 (2004).

  66. H. Maeda, Cellulose Commun. 63, 135 (2006).

    CAS  Google Scholar 

  67. M. Tabuchi and M. Iwaide, Dried Cellulose Aerogel, its Manufacture from Hydrogel, and Manufacture of the Restored Hydrogel (Jpn. Kokai Tokkyo Koho, 2013).

    Google Scholar 

  68. M. Phisalaphong, T. Suwanmajo, and P. Tammarate, J. Appl. Polym. Sci. 107, 3419 (2008).

    Article  CAS  Google Scholar 

  69. J. Li, J. Li, and L. Li, J. Southwest Forestry College, No. 5, 75 (2011).

    Google Scholar 

  70. M. Matsunaga, Research Trends of Supercritical Carbon Dioxide Treatment Technology Intended for Wood Materials (Mokuzai Kogyo, 2012).

    Google Scholar 

  71. S. Kang, K. L. Levien, and J. J. Morrell, Wood Sci. Technol. 39, 328 (2005).

    Article  CAS  Google Scholar 

  72. P. F. Schneider and J. J. Morrell, Wood Fiber Sci. 37, 413 (2005).

    CAS  Google Scholar 

  73. M. Matsunaga, H. Matsunaga, Y. Kataoka, and H. Matsui, J. Wood Sci. 51, 195 (2005).

    Article  CAS  Google Scholar 

  74. US Patent No. 20050196539 A1 (2005).

  75. M. Matsunaga, H. Matsunaga, I. Momohara, W. Ohmura, H. Matsui, Y. Kataoka, and K. Setoyama, Mokuzai Kogyo 62 (7), 311 (2007).

    CAS  Google Scholar 

  76. S. A. Eastman, A. J. Lesser, and T. J. McCarthy, in Proceedings of the Annual Technical Conference of Society of Plastics Engineers (Milwaukee, WI, 2008).

    Google Scholar 

  77. Wood Treatment Composition Comprising Supercritical Fluid, Antimildew Component and Waterproofing Component, and Process for Antimildew and Waterproofing Treatment of Wood by Using the Same (Faming Zhuanli Shenqing, 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasikova.

Additional information

Original Russian Text © K.G. Bogolitsyn, A.A. Krasikova, M.A. Gusakova, 2014, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2014, Vol. 9, No. 3, pp. 83–95.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolitsyn, K.G., Krasikova, A.A. & Gusakova, M.A. Supercritical fluid technologies in the chemistry of wood and its components. Russ. J. Phys. Chem. B 9, 1065–1073 (2015). https://doi.org/10.1134/S1990793115070040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115070040

Keywords

Navigation