Skip to main content
Log in

Emissivity of the main greenhouse gases

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Based on the high-resolution data on the absorption lines of gases from the HITRAN open inter-national database in conjunction with inverse Fourier transform, the autocorrelation function of the total dipole moment of the molecules of the main greenhouse gases, such as H2O, CO2, O3, N2O, and CH4, are determined. The spectral absorption coefficient and spectral radiance of these gases in the investigated IR region is calculated. An analysis of the emissivity of each of the gases is performed. An efficiency criterion of IR absorption and emission is introduced, according to which the studies gases are ranked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Eliseev, Izv. Atmos. Ocean. Phys. 44, 279 (2008).

    Article  Google Scholar 

  2. D. J. Hofmann, J. H. Butler, E. J. Dlugokencky, et al., Tellus B 58, 614 (2006).

    Article  Google Scholar 

  3. World Meteorological Organization, Greenhouse Gas Bull. 3, 4 (2007).

    Google Scholar 

  4. International Panel on Climate Change, Climate Change 2007: The Physical Science Basis (Cambridge Univ. Press, Cambridge, UK, 2007).

    Book  Google Scholar 

  5. R. M. Stratt, Acc. Chem. Res. 28, 201 (1995).

    Article  CAS  Google Scholar 

  6. T. Keyes, J. Chem. Phys. 104, 9349 (1996).

    Article  CAS  Google Scholar 

  7. L. S. Rothman, I. E. Gordon, A. Barbe, et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009).

    Article  CAS  Google Scholar 

  8. J. T. Kindt and C. A. Schmuttenmaer, J. Chem. Phys. 106, 4389 (1997).

    Article  CAS  Google Scholar 

  9. F. Bresme, J. Chem. Phys. 115, 7564 (2001).

    Article  CAS  Google Scholar 

  10. M. Neumann, J. Chem. Phys. 82, 5663 (1985).

    Article  CAS  Google Scholar 

  11. Physical Encyclopedy, Ed. by A. M. Prokhorov (Sov. Entsiklopediya, Moscow, 1988) [in Russian].

    Google Scholar 

  12. P. L. Goggin and C. Carr, Water and Aqueous Solutions, Vol. 37 (Adam Hilger, Bristol, Boston, 1986), p. 149.

    Google Scholar 

  13. W. F. Evans and E. Puckrin, J. Clim. 8, 3091 (1995).

    Article  Google Scholar 

  14. W. F. Evans, E. Puckrin, and T. P. Ackerman, in Proceedings of the 12th ARM Science Team Meeting (St.-Petersburg, Florida, 2002), p. 1.

    Google Scholar 

  15. T. Matsui and Sr. R. A. Pielke, Geophys. Rev. Lett. 33, L11813 (2006).

    Article  Google Scholar 

  16. M. N. England, R. A. Ferrare, S. H. Melfi, D. N. Whiteman, and T. A. Clark, J. Geophys. Res. 97, 899 (1992).

    Article  Google Scholar 

  17. G. Vaughan, C. Cambridge, L. Dean, and A. W. Phillips, Atmos. Chem. Phys. Discuss 4, 8357 (2004).

    Article  Google Scholar 

  18. J. B. Abshire, H. Riris, G. R. Allan, et al., Tellus B 62, 770 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, O.R. Rakhmanova, 2013, published in Khimicheskaya Fizika, 2013, Vol. 32, No. 6, pp. 88–96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Rakhmanova, O.R. Emissivity of the main greenhouse gases. Russ. J. Phys. Chem. B 7, 346–353 (2013). https://doi.org/10.1134/S1990793113030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113030020

Keywords

Navigation