Skip to main content
Log in

Conversion of brown coal in sub- and supercritical water at cyclic pressurization and depressurization

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The conversion of brown coal in sub- and supercritical water at 310–460°C and pressures up to 30 MPa in the cyclic pressurization and depressurization modes is studied. The temperature dependences of coal organic matter (COM) conversion and the yield of volatile and condensed products are obtained. The temperature dependence of the yield of condensed substances has a maximum at 370°C. The fraction of high-molecular substances in condensed products is increased with increasing temperature. The cumulative conversion of COM into volatile and condensed products upon heating to 460°C was 31.4 and 8.6%, respectively. According to the data of mass spectrometry analysis of volatile products and the elemental analysis of the initial coal, carbonaceous residue after the conversion, and condensed products, 82.3% of oxygen and 74.7% of sulfur, are removed from COM. CO2 and H2S are the main products of the conversion of oxygen- and sulfur-containing groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. van Krevelen, Coal. Typology-Physics-Chemistry-Composition (Elsevier, Amsterdam, 1993).

    Google Scholar 

  2. Chemical Encyclopedy (Bol’sh. Ross. Entsiklopediya, Moscow, 1998) [in Russian].

  3. I. V. Eremin and T. M. Bronovets, Rank Composi tion of Coal and Its Rational Use (Nedra, Moscow, 1994) [in Russian].

    Google Scholar 

  4. M. I. Shchadov, V. B. Artem’ev, V. M. Shchadov, S. G. Gagarin, I. V. Eremin, S. A. Klimov, A. V. Lisurenko, and A. G. Netsvetaev, Natural Potential of Coal: Rational Utilization of Their Organic Components (Nedra Commun., Moscow, 2000) [in Russian].

    Google Scholar 

  5. M. Sakaguchi, K. Laursen, H. Nakagawa, and K. Miura, Fuel Proc. Technol. 89, 391 (2008).

    Article  CAS  Google Scholar 

  6. M. Morimoto, H. Nakagawa, and K. Miura, Energy Fuels 23, 4533 (2009).

    Article  CAS  Google Scholar 

  7. M. Morimoto, H. Nakagawa, and K. Miura, Energy Fuels 24, 3060 (2010).

    Article  CAS  Google Scholar 

  8. S. D. Brandes and R. A. Graff, Energy Fuels 3, 494 (1985).

    Article  Google Scholar 

  9. Z. Wang, H. Shiu, Z. Pei, and J. Gao, Fuel 87, 527 (2008).

    Article  CAS  Google Scholar 

  10. C. Zeng, G. Favas, H. Wu, A. L. Chaffee, J. Hayashi, and C.-Z. Li, Energy Fuels 20, 281 (2006).

    Article  CAS  Google Scholar 

  11. C. Zeng, S. Clayton, H. Wu, J. Hayashi, and C.-Z. Li, Energy Fuels 21, 399 (2007).

    Article  CAS  Google Scholar 

  12. L. Cheng and R. B. J. Zhang, Fuel Proc. Technol. 85, 921 (2004).

    Article  CAS  Google Scholar 

  13. S. M. Kolesnikova, P. N. Kuznetsov, E. S. Kamenskii, L. I. Kuznetsova, and V. A. Kashirtsev, Khim. Tverd. Topliva, No. 4, 14 (2010).

  14. B. Wu, H. Hu, S. Huang, Y. Fang, X. Li, and M. Meng, Energy Fuels 22, 3944 (2008).

    Article  CAS  Google Scholar 

  15. A. A. Vostrikov, O. N. Fedyaeva, D. Yu. Dubov, S. A. Psarov, and M. Ya. Sokol, SKF-TP 2(4), 70 (2007).

    Google Scholar 

  16. http://webbook.nist.gov/chemistry

  17. A. A. Aleksandrov and B. A. Grigor’ev, Tables of Thermophysical Properties of Water and Steam (Mosc. Energ. Inst., Moscow, 2003) [in Russian].

    Google Scholar 

  18. Modern Methods of Petroleum Studies, Ed. by A.I. Bogomolov, M. B. Temyanko, and L. I. Khotyntseva (Nedra, Leningrad, 1984) [in Russian].

    Google Scholar 

  19. L. A. Bovan, V. A. Tamko, Yu. V. Tamarkina, and V. A. Kucherenko, Khim. Tverd. Topliva, No. 5, 14 (2009).

  20. G. Domazetis, M. Raoarun, and B. D. James, Energy Fuels 20, 1997 (2006).

    Article  CAS  Google Scholar 

  21. I. I. Lishtvan, P. L. Falyushin, V. M. Dudarchik, V. N. Kozhurin, and E. V. Anufrieva, Khim. Tverd. Topliva, No. 3, 20 (2009).

  22. A. A. Vostrikov, D. Yu. Dubov, and S. A. Psarov, Izv. Ross. Akad. Nauk, Ser. Khim., No. 8, 1406 (2001).

  23. S. G. Gagarin, Koks Khim., No. 10, 16 (2001).

  24. L. Li and N. O. Egiebor, Energy Fuels 6, 35 (1992).

    Article  CAS  Google Scholar 

  25. Q. Zhou, H. Hu, Q. Liu, S. Zhu, and R. Zhao, Energy Fuels 19, 892 (2005).

    Article  CAS  Google Scholar 

  26. E. Jorjani, J. Yperman, R. Carleer, and B. Rezai, Fuel 85, 114 (2006).

    Article  CAS  Google Scholar 

  27. A. A. Vostrikov, D. Yu. Dubov, and S. A. Psarov, in Proceedings of the 9th Meeting on Supercritical Fluids, CD (Trieste, Italy, 2004).

    Google Scholar 

  28. S. A. Psarov, Candidate’s Dissertation in Mathematics and Physics (Novosibirsk, 2006).

  29. T. Wang and X. Zhu, Fuel 82, 2267 (2002).

    Article  Google Scholar 

  30. S. G. Gagarin, Koks Khim., No. 7, 31 (2003).

  31. O. N. Fedyaeva and Yu. F. Patrakov, Khim. Tverd. Topliva, No. 5, 24 (2004).

  32. R. C. Neavel, S. E. Smith, E. J. Hippom, and R. N. Miller, Fuel 65, 312 (1986).

    Article  CAS  Google Scholar 

  33. S. V. Alekseenko, A. P. Burdukov, G. V. Chernova, and V. N. Churashev, Izv. Ross. Akad. Nauk, Energ., No. 2, 52 (2003).

  34. M. D. Bermejo, M. J. Cocero, and F. Fernandes-Polanco, Fuel 83, 195 (2004).

    Article  CAS  Google Scholar 

  35. A. A. Vostrikov, D. Yu. Dubov, S. A. Psarov, and M. Ya. Sokol, Combust. Explos., Shock Waves 44, 141 (2008).

    Article  Google Scholar 

  36. S. Wang, Y. Guo, Y. Wang, D. Xu, and H. Ma, Fuel. Proc. Technol. 92, 291 (2011).

    Article  CAS  Google Scholar 

  37. A. A. Vostrikov, S. A. Psarov, and D. Yu. Dubov, Tech. Phys. Lett. 27, 847 (2001).

    Article  CAS  Google Scholar 

  38. A. A. Vostrikov and S. A. Psarov, Tech. Phys. Lett. 28, 776 (2002).

    Article  CAS  Google Scholar 

  39. W.-J. Gong, F. Li, and D.-L. Xi, Water Environ. Res. 80, 186 (2008).

    Article  CAS  Google Scholar 

  40. B. Veriansyah, J.-D. Kim, and J.-C. Lee, Ind. Eng. Chem. Res. 44, 901 (2005).

    Article  Google Scholar 

  41. T. Wang, B. Xiang, J. Liu, and Z. Shen, Environ. Sci. Technol. 37, 1955 (2003).

    Article  CAS  Google Scholar 

  42. http://webbook.nist.gov/chemistry/fluid/

  43. A. A. Vostrikov, O. N. Fedyaeva, A. V. Shishkin, and M. Ya. Sokol, SKF-TP 2(4), 43 (2007).

    Google Scholar 

  44. A. A. Vostrikov and O. N. Fedyaeva, J. Supercrit. Fluids 55, 307 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Additional information

Original Russian Text © O.N. Fedyaeva, A.A. Vostrikov, A.V. Shishkin, M.Ya. Sokol, L.S. Borisova, V.A. Kashirtsev, 2011, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2011, Vol. 6, No. 4, pp. 59–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V. et al. Conversion of brown coal in sub- and supercritical water at cyclic pressurization and depressurization. Russ. J. Phys. Chem. B 6, 793–803 (2012). https://doi.org/10.1134/S1990793111080069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111080069

Keywords

Navigation