Skip to main content
Log in

The effect of doxorubicin incorporated into a phospholipid delivery nanosystem on HepG2 cells proteome

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

A phospholipid drug delivery nanosystem with particle size up to 30 nm elaborated at the Orekhovich Institute of Biomedical Chemistry (Russian Academy of Medical Sciences) has been used earlier for incorporation of doxorubicin (Doxolip). This system demonstrated higher antitumor effect in vivo as compared with free doxorubicin. In this study the effect of this nanosystem containing doxorubicin on HepG2 cell proteome has been investigated. Cells were incubated in a medium containing phospholipid nanoparticles (0.5 μg/mL doxorubicin, 10 μg/mL phosphatidylcholine). After incubation for 48 h their survival represented 10% as compared with untreated cells. Cell proteins were analyzed by quantitative two-dimensional gel electrophoresis followed by identification of differentially expressed proteins with MALDI-TOF mass spectrometry. The phospholipid transport nanosystem itself insignificantly influenced the cell proteome thus confirming previous data on its safety. Doxorubicin, as both free substance and Doxolip (i.e., included into phospholipid nanoparticles) induced changes in expression of 28 proteins. Among these proteins only four of them demonstrated different in response to the effect of the free drug substance and Doxolip. Doxolip exhibited a more pronounced effect on expression of certain proteins; the latter indirectly implies increased penetration of the drug substance (included into nanoparticles) into the tumor cells. Increased antitumor activity of doxorubicin included into phospholipid nanoparticles may be associated with more active increase of specific protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusinska, M., Nanomedicine, 2009, vol. 4, pp. 605–607.

    Article  Google Scholar 

  2. Archakov, A.I., Biomed. Khim., 2010, vol. 56, pp. 7–25.

    CAS  Google Scholar 

  3. Govorun, V.M. and Archakov, A.I., Biochemistry (Moscow), 2002, vol. 67, pp. 1341–1359.

    Article  Google Scholar 

  4. Hong, M.L., Jiang, N., Gopinath, S., and Chew, F.T., Clin. Exp. Pharmacol. Physiol., 2006, vol. 33, pp. 563–568.

    Article  CAS  Google Scholar 

  5. Moshkovskii, S.A., Sokolova, E.E., Brattseva, E.V., Karpova, M.A., Pyatnitskiy, M.A., Kubanova, A.A., and Archakov, A.I., Proteomics Clin. Appl., 2011, vol. 5, no. 78, pp. 432–439.

    Article  CAS  Google Scholar 

  6. Agrawal, G.K., Timperio, A.M., Zolla, L., Bansal, V., Shukla, R., and Rakwal, R., J. Proteomics, 2013, Apr. 22. pii: S1874–3919 [Epub ahead of print].

    Google Scholar 

  7. Johnson, C.J., Zhukovsky, N., Cass, A.E., and Nagy, J.M., Proteomics, 2008, vol. 8, no. 4, pp. 715–730.

    Article  CAS  Google Scholar 

  8. Rafati, H. and Mirzajani, F., Pharmazie, 2011, vol. 66, no. 1, pp. 31–36.

    CAS  Google Scholar 

  9. Archakov, A.I., Guseva, M.K., Uchaikin, V.F., Ipatova, O.M., Tikhonova, E.G., Medvedeva, N.V., Lisitsa, A.V., Prozoroskii, V.N., Strekalova, O.S., and Shironin, A.V., Rus Patent no. 2391966, Byul. Izobret., 2010, no. 17.

    Google Scholar 

  10. Ipatova, O.M., Prozorovskiy, V.N., Medvedeva, N.V., Shironin, A.V., Strekalova, O.S., Ivanova, N.D., Torkhovskaya, T.I., and Archakov, A.I., Eur. Congress for Drug Discovery (MipTec), 2010, Basel, Abstr. 80.

    Google Scholar 

  11. Archkov, A.I., Ipatova, O.M., Medvedeva, N.V., Prozoroskii, V.N., Torkhovskaya, T.I., Tikhonova, E.G., Zykova, M.G., and Voskresenskaya, A.A., Rus. Patent no. 2411935, Byul. Izobret., 2011, no. 5.

    Google Scholar 

  12. Zykova, M.A., Ipatova, O.M., Prozorovskii, V.N., Medvedeva, N.V., Voskresenskaya, A.A., Zakharova, T.S., and Torkhovskaya, T.I., Biomed. Khim., 2011, vol. 57, pp. 174–179.

    CAS  Google Scholar 

  13. Zykova, M.A., Medvedeva, N.V., Torkhovskaya, T.I., Tikhonova, E.G., Prozorovskii, V.N., Zakharova, T.S., and Ipatova, O.M., Exp. Oncol., 2012, vol. 34, no. 4, pp. 323–326.

    CAS  Google Scholar 

  14. Hammer, E., Bien, S., Salazar, M.G., Steil, L., Scharf, C., Hildebrandt, P., Schroeder, H.W., Kroemer, H.K., Vösker, U., and Ritter, C.A., Proteomics, 2010, vol. 10, pp. 99–114.

    Article  CAS  Google Scholar 

  15. http://universal-en-ru.academic.ru/202111/MTT-assay

  16. Gorg, A., Postel, W., and Gunther, S., Electrophoresis, 1985, vol. 6, pp. 599–604.

    Article  Google Scholar 

  17. O’Farrell, P., J. Biol. Chem., 1975, vol. 250, pp. 4007–4021.

    Google Scholar 

  18. Mortz, E., Krogh, T.N., Vorum, H., and Görg, A., Proteomics, 2001, vol. 1, pp. 1359–1363.

    Article  CAS  Google Scholar 

  19. Van Summeren, A., Renes, J., Bouwman, F.G., Noben, J.P., van Delft, J.H., Kleinjans, J.C., and Mariman, E.C., Toxicol. Sci., 2011, vol. 129, no. 1, pp. 109–122.

    Article  Google Scholar 

  20. Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A., Anal. Chem., 2003, vol. 75, no. 6, pp. 1300–1306.

    Article  CAS  Google Scholar 

  21. Bien, S., Ritter, C.A., Kranz, M., Scharf, C., Steil, L., Hummel, M., Vösker, U., Cascorbi, I., and Kroemer, H.K., J. Clin. Pharmacol. Ther., 2004, vol. 42, no. 11, pp. 640–641.

    Article  CAS  Google Scholar 

  22. Wu, Z., Jia, X., de la Cruz, L., Su, X.C., Marzolf, B., Troisch, P., Zak, D., Hamilton, A., Whittle, B., Yu, D., Sheahan, D., Bertram, E., Aderem, A., Otting, G., Goodnow, C.C., and Hoyne, G.F., Immunity, 2008, vol. 29, pp. 863–875.

    Article  CAS  Google Scholar 

  23. Robertson, N., Potter, C., and Harris, A.L., Cancer Research, 2004, vol. 64, pp. 6160–6165.

    Article  CAS  Google Scholar 

  24. Li, X., Ding, L., Xu, Y., Wang, Y., and Ping, Q., Int. J. Pharm., 2009, vol. 373, pp. 116–123.

    Article  CAS  Google Scholar 

  25. Li, L., Gong, H., Yu, H., Liu, X., Liu, Q., Yan, G., Zhang, Y., Lu, H., Zou, Y., and Yang, P., J. Cell Biochem., 2012, vol. 113, pp. 3788–3796.

    Article  CAS  Google Scholar 

  26. Honoré, B., Buus, S., and Claësson, M.H., Proteome Sci., 2008, vol. 6, p. 18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Torkhovskaya.

Additional information

Original Russian Text © K.G. Kuznetzova, E.V. Kazlas, T.I. Torkhovskaya, P.A. Karalkin, I.V. Vachrushev, T.S. Zakharova, M.A. Sanzhakov, S.A. Moshkovskii, O.M. Ipatova, 2014, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetzova, K.G., Kazlas, E.V., Torkhovskaya, T.I. et al. The effect of doxorubicin incorporated into a phospholipid delivery nanosystem on HepG2 cells proteome. Biochem. Moscow Suppl. Ser. B 8, 77–83 (2014). https://doi.org/10.1134/S1990750814010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750814010090

Keywords

Navigation