Skip to main content
Log in

Aggregation of erythrocytes and their membranes flexibility in patients with cancer-associated anemia: Mechanisms of changes under the influence of epoetin alfa

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The relationships between the red blood cell (RBC) membrane elasticity and RBC aggregation in healthy individuals and in patients with anemia of malignant tumors treated with human erythropoietin drug epoetin alfa (EA) were analyzed. It was found that prior to the treatment of patients, incubation of RBCs with EA was accompanied by an increase of RBC deformability and the reduction of their aggregation (RBCA). In these circumstances the two characteristics of the RBC microrheology correlated negatively with each other (r =–0.734, p < 0.05). In contrast, aggregation and deformability of RBCs from healthy individuals increased under the influence of EA and positively correlated with each other (r = 0.580, p < 0.05). After a 4-week treatment of patients with EA, aggregation response of the patients’ RBCs was increased by 29% (p < 0.05) and was close to that of healthy RBCs. This change of the RBC aggregation response may be connected with an alteration of the sensitivity of the membrane cationic channel to EA and an increase of the cell deformability. This possibility was supported by experiments with the use of Ca2+-channel blocker verapamil and Ca2+-chelating agent EDTA. Under these conditions a decrease of the RBC aggregation varied from 40 to 50% (p < 0.05). It was suggested that the effectors of calcium regulatory cascade upon exposure to EA may be membrane integrin receptors of type IIb–IIIa. This assumption was confirmed by experiments employing the inhibitors of these receptors (tirofibam and integrelin) and a preparation of monoclonal antibodies against IIb–IIIa receptors (monafram), which produced a significant decrease (20–30%, p < 0.05) of the RBC aggregation. Thus, our findings suggest that the altered aggregation response of RBCs in anemic patients with malignant tumors can be restored by the correction of anemia with epoetin alfa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nash G.B., Watts T., Thornton C., Barigou M. 2008. Red cell aggregation as a factor influencing margination and adhesion of leukocytes and platelets. Clin. Hemorheol. Microcirc. 39, 303–310.

    CAS  PubMed  Google Scholar 

  2. Cabel M., Meiselman H.J., Popel A.S., Johnson P.C. 1997. Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle. Am. J. Physiol. 272, H1020–H1032.

    CAS  PubMed  Google Scholar 

  3. Watts T., Barigou M., Nash G.B. 2013. Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: Why are platelets so small? Am. J. Physiol. Heart Circ. Physiol. 304 (11), H1483–H1494. doi 10.1152/ajpheart.00881.2012

    Article  CAS  Google Scholar 

  4. Lipowsky H.H. 2005. Microvascular rheology and hemodynamics. Microcirculation. 12, 5–15.

    Article  PubMed  Google Scholar 

  5. Kim S., Ong P.K., Yalcin O., Intaglietta M., Johnson P.C. 2009. The cell-free layer in microvascular blood flow. Biorheology. 46, 81–89. doi 10.3233/BIR-2009-0530

    Google Scholar 

  6. Meiselman H.J. 2009. Red blood cell aggregation: 45 years being curious. Biorheology. 46, 1–19. doi 10.3233/BIR-2009-0522

    CAS  PubMed  Google Scholar 

  7. Chien S., Jan K. 1973. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res. 5, 155–166.

    Article  CAS  PubMed  Google Scholar 

  8. Baskurt O.K., Hardeman M.R., Rampling W., Meiselman H.J. 2007. Handbook of hemorheology and hemodynamics. Amsterdam: IOS Press.

  9. Oonishi T., Sakashita K., Uyesaka N. 1997. Regulation of red blood cell filterability by Ca2+ influx and cAMPmediated signaling pathways. Am. J. Physiol. Cell Physiol. 273, C1828–C1834.

    CAS  Google Scholar 

  10. Nunomura W., Takakuwa Y., Parra M., Conboy J., Mohandas N. 2000. Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. J. Biol. Chem. 275, 24540–24546.

    Article  CAS  PubMed  Google Scholar 

  11. Saldanha C., Silva A.S., Gonç alves S., Martins-Silva J. 2007. Modulation of erythrocyte hemorheological properties by band 3 phosphorylation and dephosphorylation. Clin. Hemorheol. Microcirc. 36, 183–194.

    CAS  PubMed  Google Scholar 

  12. Muravyov A., Tikhomirova I. 2014. Signaling pathways regulating red blood cell aggregation. Biorheology. 51, 135–145.

    PubMed  Google Scholar 

  13. Erslev A.J., Caro J. 1987. Erythropoietin titers in response to anemia or hypoxia. Blood Cells. 13, 207–216.

    CAS  PubMed  Google Scholar 

  14. Muravyov A.V., Bulaeva S.V., Maimistova A.A., Cheporov S.V., Kislov N.V. 2010. Comparative efficiency and hemorheological consequences of hemotransfusion and epoetin therapy in anemic cancer patients. Clin. Hemorheol. Microcirc. 44, 115–123. doi 10.3233/CH-2010-1259

    CAS  PubMed  Google Scholar 

  15. Tikhomirova I.A., Muravyov A.V., Petrochenko E.P., Kislov N.V., Cheporov S.V., Peganova E.V. 2016. Alteration of red blood cell microrheology by anti-tumor chemotherapy drugs. Biochem. (Mosc.) Suppl. Series A: Membr. Cell Biol. 10 (2), 135–141.

    Article  Google Scholar 

  16. Myssina S., Huber S.M., Birka C., Lang P.F., Lang K.S., Friedrich B.R., Risler T., Wieder T, Lang F. 2003. Inhibition of erythrocyte cation channels by erythropoietin. J. Am. Soc. Nephrol. 14, 2750–2757.

    Article  CAS  PubMed  Google Scholar 

  17. Chunyi W., Yanjun Z., Weibo K. 2001. The influence of calcium ions and ionophore A23187 on microrheological characteristics of erythrocytes by new model ektacytometry. Clin. Hemorheol. Microcirc. 24, 19–23.

    CAS  PubMed  Google Scholar 

  18. Muravyov A.V., Tikhomirova I.A., Maimistova A.A., Bulaeva S.V. 2010. Crosstalk between adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism under red blood cell microrheological changes. Clin. Hemorheol. Microcirc. 45, 337–345. doi 10.3233/CH-2010-1317

    CAS  PubMed  Google Scholar 

  19. Nunomura W., Takakuwa Y. 2006. Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Front. Biosci. 11, 1522–1539.

    Article  CAS  PubMed  Google Scholar 

  20. Andrews R.K., Munday A.D., Mitchell C.A., Berndt M.C. 2001. Interaction of calmodulin with the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex. Blood. 98, 681–687.

    Article  CAS  PubMed  Google Scholar 

  21. Carvalho F.A., Connell S., Miltenberger-Miltenyi G., Pereira S.V., Tavares A., Arië ns R.A. 2010. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano. 4 (8), 4609–4620.

    Article  CAS  PubMed  Google Scholar 

  22. Lominadze D., Dean W. 2002. Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Lett. 517, 41–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sokolova I.A., Muravyov A.V., Khokhlova M.D., Rikova S.Yu., Lyubin E.V., Gafarova M.A. 2014. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation. Clin. Hemorheol. Microcirc. 57, 291–302.

    CAS  PubMed  Google Scholar 

  24. Dodson R.A., Hinds T.R., Vincenzi F.F. 1987. Effects of calcium and A23187 on deformability and volume of human red blood cells. Blood Cells. 12 (3), 555–564.

    CAS  PubMed  Google Scholar 

  25. Pfafferott C., Nash G.B., Meiselman H.J. 1985. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging. Biophys. J. 47, 695–704.

    CAS  PubMed  Google Scholar 

  26. Bialevich K.I., Kostsin D.G., Slobozhanina E.I. 2014. Eryptosis is the programmed death of erythrocytes. Biol. Bulletin Rev. 4 (6), 477–484. doi 10.1134/S2079086414060024

    Article  Google Scholar 

  27. Baskurt O.K, Meiselman H.J. 2003. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 29, 435–450.

    Article  CAS  PubMed  Google Scholar 

  28. Baskurt O.K., Meiselman H.J. 1998. Activated polymorphonuclear leukocytes affect red blood cell aggregability. J. Leukocyte Biol. 63, 89–93.

    CAS  PubMed  Google Scholar 

  29. Kim, A.S. Popel, Intaglietta M., Johnson P.C. 2005. Aggregate formation of erythrocytes in postcapillary venules. Am. J. Physiol. Heart Circ. Physiol. 288, 584–590.

    Article  Google Scholar 

  30. Wautier J.L., Schmid-Schönbein G.W., Nash G.B. 1999. Measurement of leukocyte rheology in vascular disease: Clinical rationale and methodology. International Society of Clinical Hemorheology. Clin. Hemorheol. Microcirc. 21, 7–12.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Muravyov.

Additional information

Original Russian Text © A.V. Muravyov, I.A. Tikhomirova, E.P. Petrochenko, N.V. Kislov, Ju.V. Malysheva, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 6, pp. 422–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravyov, A.V., Tikhomirova, I.A., Petrochenko, E.P. et al. Aggregation of erythrocytes and their membranes flexibility in patients with cancer-associated anemia: Mechanisms of changes under the influence of epoetin alfa. Biochem. Moscow Suppl. Ser. A 11, 62–67 (2017). https://doi.org/10.1134/S1990747816040176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747816040176

Keywords

Navigation