Skip to main content
Log in

Alteration of red blood cell microrheology by anti-tumor chemotherapy drugs

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The aim of this study was to estimate effects of some chemotherapy drugs on the elasticity and deformability of the membrane of a red blood cell (RBC). It was found that incubation of red blood cells (RBCs) with cisplatin or epoetin alpha led to considerable (by 10–17%; p < 0.05) increase in the RBC deformability and that cisplatin could activate tyrosine protein kinases (TPKs). Preincubation of RBCs with a specific inhibitor of EGF-R and Src kinase, lavendustin A, almost completely prevented the cisplatin effect. Tyrosine phosphatase inhibitor, sodium orthovanadate, increased the RBC deformability (p < 0.05). This effect was also abandoned by lavendustin A. To test a hypothesis on the involvement of protein kinases of mature RBCs in control of their membrane elasticity, the cells were incubated with phorbol 12-myristate 13-acetate (PMA) activating protein kinase Cα (PKCα). PMA increased the RBC deformability only moderately (by 8%, p < 0.05) and the effect was canceled by nonselective and selective PKC inhibitors staurosporin and 4-(1-methylindol-3-yl)maleimide hydrochloride. Erythropoietin is known to inhibit the nonselective cation channels of the RBC membrane; however, preincubation of the cells with verapamil did not cancel the increase in their deformability. Hence, this increase in deformability could be a result of the action of tyrosine protein kinases, the more so that this effect was almost completely canceled by lavendustion A. The results suggest that the presence of functionally active protein kinases and phosphatases in the membranes of mature RBC makes them a target for the addressed effects of signal molecules, including some chemotherapy drugs, causing consecutive alterations in the RBC membrane elasticity, microrheological properties, and transport potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. 1981. The mechanics of the circulation. M.: Mir.

    Google Scholar 

  2. Baskurt O.K., Meiselman H.J. 2003. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 29, 435–450.

    Article  CAS  PubMed  Google Scholar 

  3. Priers A.R., Secomb T. 2003. Rheology of the microcirculation. Clin. Hemorheol. Microcirc. 29, 143–148.

    Google Scholar 

  4. Reglin B., Secomb T.W., Pries A.R. 2009. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors? Amer. J. Physiol. Heart. 297, H2206–H2219.

    Article  CAS  Google Scholar 

  5. Oonishi T., Sakashita K., Uysaka N. 1997. Regulation of red blood cell filterability by Ca2+ influx and cAMPmediated signaling pathways. Am. J. Physiol. 273, 1828–1834.

    Google Scholar 

  6. Muravyov A.V., Yakusevich V.V., Maimistova A.A., Chuchkanov F.A., Bulaeva S.V. 2007. Hemorheological efficiency of drugs, targeting on intracellular phosphodiesterase activity: In vitro study. Clin. Hemorheol. Microcirc. 24, 19–23.

    Google Scholar 

  7. De Oliveira S., Silva-Herdade A., Saldanha C. 2008. Modulation of erythrocyte deformability by PKC activity. Clin. Hemorheol. Microcirc. 39, 363–373.

    PubMed  Google Scholar 

  8. Muravyov A.V., Tikhomirova I.A. 2013. Role molecular signaling pathways in changes of red blood cell deformability. Clin. Hemorheol. Microcirc. 53 (1–2), 45–59.

    PubMed  Google Scholar 

  9. Minetti G., Ciana A., Balduini C. 2004. Differential sorting of tyrosine kinases and phosphotyrosine phosphatases acting on band 3 during vesiculation of human erythrocytes. Biochem. J. 377, 489–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sundquist J., Bias S., Hogan J., Faith B., Davis P. 1999. The a1-adrenergic receptor in human erythrocyte membranes mediates interaction in vitro of epinephrine and thyroid hormone at the membrane Ca2+-ATPase. Cellular Signalling. 24, 795–799.

    Google Scholar 

  11. Romero P.J., Romero E.A. 2003. New vanadateinduced Ca2+ pathway in human red cells. Cell Biol. Int. 27, 903–912.

    Article  CAS  PubMed  Google Scholar 

  12. Nunomura W., Takakuwa Y. 2006. Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Front. Biosci. 11, 1522–1539.

    Article  CAS  PubMed  Google Scholar 

  13. Muravyov A.V., Tikhomirova I.A. 2015. Red blood cell microrheological changes and drug transport efficiency. J. Cell. Biotechnol. 1, 45–51.

    Article  Google Scholar 

  14. Dintenfass L. 1977. Theoretical aspects and clinical applications of the blood viscosity equation containing a term for the internal viscosity of the red cell. Blood Cells. 3, 367–374.

    Google Scholar 

  15. Muravyov A.V., Mikhaylova S.G., Tikhomirova I.A. 2014. Role of the intracellular signaling systems in regulation of erythrocyte microrheology. Biol. membrany (Rus.). 31, 1–7.

    Google Scholar 

  16. Andrews D.A., Yang Lu., Low Ph.S. 2002. Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Blood. 100, 3392–3399.

    Article  CAS  PubMed  Google Scholar 

  17. Manno S., Takakuwa Y., Mohandas N. 2005. Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. J. Biol. Chem. 280, 7581–7587.

    Article  CAS  PubMed  Google Scholar 

  18. Bragadin M., Ion-Popa F., Clari G., Bordin L. 2007. SHP-1 tyrosine phosphatase in human erythrocytes. Ann. N.Y. Acad. Sci. 1095, 193–203.

    Article  CAS  PubMed  Google Scholar 

  19. Mohandas N., Gallagher P.G. 2008. Red cell membrane: Past, present, and future. Blood. 12, 3939–3948.

    Article  Google Scholar 

  20. Mallozzi C., Di Stasi A.M., Minetti M. 1997. Peroxynitrite modulates tyrosine-dependent signal transduction pathway of human erythrocyte band 3. FASEB. 11, 1281–1290.

    CAS  Google Scholar 

  21. Govekar R.B., Zingde S.M. 2001. Protein kinase C isoforms in human erythrocytes Ann. Hematol. 80, 531–534.

    CAS  Google Scholar 

  22. De Franceschi L., Fumagalli L., Olivieri O., Corrocher R., Lowell C.A., Berton G. 1997. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport. J. Clin. Invest. 99 (2), 220–227.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ingley E. 2012. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun. Signal. 10 (1), 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luttrell D.K., Luttrell L.M. 2004. Not so strange bed fellows: G-protein-coupled receptors and Src family kinases. Oncogene. 23 (48), 7969–7978.

    Article  CAS  PubMed  Google Scholar 

  25. Zipser Y., Kosower N.S. 1996. Phosphotyrosine phosphatase associated with band 3 protein in the human erythrocyte membrane. Biochem. J. 314, 881–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pantaleo A., Ferru E., Giribaldi G., Mannu F., Carta F., Matte A., de Franceschi L., Turrini F. 2009. Oxidized and poorly glycosylated band 3 is selectively phosphorylated by Syk kinase to form large membrane clusters in normal and G6PD-deficient red blood cells. Biochem. J. 418 (2), 359–367.

    Article  CAS  PubMed  Google Scholar 

  27. Hu D.E., Fan T.P. 1995. Suppression of VEGFinduced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A. Br. J. Pharmacol. 114, 262–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar R., Shrivastava A., Sodhi A. 1995. Cisplatin stimulates protein tyrosine phosphorylation in macrophages. Biochem. Mol. Biol. Int. 35, 541–547.

    CAS  PubMed  Google Scholar 

  29. Singh R.A., Sodhi A. 1998. Expression and activation of lyn in macrophages treated in vitro with cisplatin: Regulation by kinases, phosphatases and Ca2+/calmodulin. Biochim. Biophys. Acta. 1405, 171–179.

    Article  CAS  PubMed  Google Scholar 

  30. Zipser Y., Piade A., Barbul A., Korenstein R., Kosower N.S. 2002. Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem. J. 368 (Pt 1), 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ling E., Danilov Y.N., Cohen C.M. 1988. Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation. J. Biol. Chem. 263, 2209–2216.

    CAS  PubMed  Google Scholar 

  32. Silva-Herdade A.S., Freitas T., Almeida J.P., Saldanha C. 2015. Erythrocyte deformability and nitric oxide mobilization under pannexin-1 and PKC dependence. Clin. Hemorheol. Microcirc. 59 (2), 155–162.

    CAS  PubMed  Google Scholar 

  33. Salomao M., Zhang X., Yang Y., Lee S., Hartwig J.H., Chasis J.A., Mohandas N., An X. 2008. Protein 4.1Rdependent multiprotein complex: New insights into the structural organization of the red blood cell membrane. Proc. Natl. Acad. Sci. USA. 105, 8026–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baciu I., Ivanof L., Pavel T. 1985. Erythropoietin binding to the red cell membranes. Physiologie. 22, 227–231.

    CAS  PubMed  Google Scholar 

  35. Yoshimura A., Arai K. 1996. Physician education: The erythropoietin receptor and signal transduction. Oncologist. 1, 337–339.

    CAS  PubMed  Google Scholar 

  36. De Franceschi L., Fumagalli L., Olivieri O., Corrocher R., Lowell C.A., Berton G. 1997. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport. J. Clin. Invest. 99 (2), 220–227.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Avdonin P.V., Tkachuk V.A. 1994. Retseptory i vnutrikletochnyi kaltsii (Receptors and intracellular calcium). M.: Nauka.

    Google Scholar 

  38. Tong W., Zhang J., Lodish H.F. 2005. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 15, 4604–4612.

    Article  Google Scholar 

  39. Ruetten H., Thiemermann C. 1997. Effects of tyrphostins and genistein on the circulatory failure and organ dysfunction caused by endotoxin in the rat: A possible role for protein tyrosine kinase. Br. J. Pharmacol. 122 (1), 59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chin H., Arai A., Wakao H., Kamiyama R., Miyasaka N., Miura O. 1998. Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood. 91 (10), 3734–3745.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Muravyov.

Additional information

Original Russian Text © I.A. Tikhomirova, A.V. Muravyov, E.P. Petrochenko, N.V. Kislov, S.V. Cheporov, E.V. Peganova, 2016, published in Biologicheskie Membrany, 2016, Vol. 33, No. 1, pp. 62–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, I.A., Muravyov, A.V., Petrochenko, E.P. et al. Alteration of red blood cell microrheology by anti-tumor chemotherapy drugs. Biochem. Moscow Suppl. Ser. A 10, 135–141 (2016). https://doi.org/10.1134/S1990747815050153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815050153

Keywords

Navigation