Skip to main content
Log in

Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The aim of this study was to determine the immunological phenotype of human umbilical vein endothelial cells in culture and dynamics of expression of inducible CD molecules of the endothelial cell surface exposed to hydrogen peroxide (H2O2, 100–300 μM) in vitro. PMA was applied as a positive control. There was an insignificant increase (9–21%) of CD31 expression 3 h after the addition of H2O2 to the culture medium, statistically significant decrease of CD309 expression upon exposure to 200 and 300 μM H2O2, whereas a day after the addition of H2O2 we found a strongly pronounced dose-dependent increase of CD54 expression, as well as a moderate enhancement of the expression of all CD molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldridge C.W., Gerard R.W. 1932. The extra respiration of phagocytosis. AJP-Legacy. 103, 235–236.

    Google Scholar 

  2. Thannickal V.J., Fanburg B.L. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279(6), L1005–L1028.

    CAS  PubMed  Google Scholar 

  3. Janero D.R., Hreniuk D. 1996. Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidant stress. Am. J. Physiol. 270(6 Pt 1), C1735–C1742.

    CAS  PubMed  Google Scholar 

  4. Shappell S.B., Toman C., Anderson D.C., Taylor A.A., Entman M.L., Smith C.W. 1990. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J. Immunol. 144(7), 2702–2711.

    CAS  PubMed  Google Scholar 

  5. Jones D.P. 2008. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295(4), C849–C868.

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Ventura J.L., Madrigal-Matute J., MartinezPinna R., Ramos-Mozo P., Blanco-Colio L.M., Moreno J.A., Tarin C., Burillo E., Fernandez-Garcia C.E., Egido J., Meilhac O., Michel J.B. 2012. Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: Detoxifying mechanisms and potential therapeutic options. Thromb Haemost. 108(3), 435–442.

    Article  CAS  PubMed  Google Scholar 

  7. Gardner P.R., Nguyen D.D. and White C.W. 1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. USA. 91(25), 12248–12252

    Article  CAS  PubMed  Google Scholar 

  8. Al Ahmad A., Gassmann M., Ogunshola O.O. 2012. Involvement of oxidative stress in hypoxia-induced blood-brain barrier breakdown. Microvasc Res. 84(2), 222–225.

    Article  PubMed  Google Scholar 

  9. Mohr S., Hallak H., de Boitte A., Lapetina E.G., Brüne B. 1999. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 274(14), 9427–9430.

    Article  CAS  PubMed  Google Scholar 

  10. Neumann P., Gertzberg N., Vaughan E., Weisbrot J., Woodburn R., Lambert W., Johnson A. 2006. Peroxynitrite mediates TNF-α-induced endothelial barrier dysfunction and nitration of actin. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L674–L684.

    Article  CAS  PubMed  Google Scholar 

  11. Liu G., Vogel S.M., Gao X., Javaid K., Hu G., Danilov S.M., Malik A.B., Minshall R.D. 2011. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler. Thromb. Vasc. Biol. 31(6), 1342–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jaffe E.A, Nachman R.L., Becker C.G., Minick C.R. 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52(11), 2745–2756.

    CAS  Google Scholar 

  13. Danilov S.M., Allikmets E., Martynov A. 1984. Stimulation of cultured human vascular endothelial cell proliferation by growth factors from human brain, heparin and thrombine. J. Cell Biol. 99, 274.

    Google Scholar 

  14. Goncharov N.V., Sakharov I.I., Danilov S.M., Sakandelidze O.G. 1987. Use of collagenase from the hepatopancreas of the Kamchatka crab for isolating and culturing endothelial cells of the large vessels in man. Byull. Exp. Biol. Med. (Rus.). 103(9), 376–378.

    Google Scholar 

  15. Cho J., Kennedy D.R., Lin L., Huang M., MerrillSkoloff G., Furie B.C., Furie B. 2012. Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of β3 integrins. Blood. 120(3), 647–655.

    Article  CAS  PubMed  Google Scholar 

  16. Hoyer L.W., Nachman R.L.1974. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc. Natl. Acad. Sci. USA. 71(5), 1906–1909.

    Article  PubMed  Google Scholar 

  17. Hecquet C.M., Ahmmed G.U., Vogel S.M., Malik A.B. 2008. Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ. Res. 102, 347–355.

    Article  CAS  PubMed  Google Scholar 

  18. Li Q., Syrovets T., Simmet T., Ding J., Xu J., Chen W., Zhu D., Gao P. 2013. Plasmin induces intercellular adhesion molecule 1 expression in human endothelial cells via nuclear factor-κB/mitogen-activated protein kinases-dependent pathways. Exp. Biol. Med. (Maywood). 238(2), 176–186.

    Article  CAS  PubMed  Google Scholar 

  19. Wong D., Dorovini-Zis K. 1992. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J. Neuroimmunol. 39(1–2), 11–21.

    Article  CAS  PubMed  Google Scholar 

  20. Yang L., Froio R.M., Sciuto T.E., Dvorak A.M., Alon R., Luscinskas F.W. 2005. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood. 106(2), 584–592.

    Article  CAS  PubMed  Google Scholar 

  21. Lawson C., Wolf S. 2009. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 61(1), 22–32.

    Article  CAS  PubMed  Google Scholar 

  22. Muro S., Gajewski C., Koval M., Muzykantov V.R. 2005. ICAM-1 recycling in endothelial cells: A novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood. 105(2), 650–658.

    Article  CAS  PubMed  Google Scholar 

  23. Muro S., Mateescu M., Gajewski C., Robinson M., Muzykantov V.R., Koval M. 2006. Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins. Am. J. Physiol. Lung Cell Mol. Physiol. 290(5), L809–L817.

    Article  CAS  PubMed  Google Scholar 

  24. Holmes K., Roberts O.L., Thomas A.M., Cross M.J. 2007. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signaling and therapeutic inhibition. Cell Signal. 19(10), 2003–2012.

    Article  CAS  PubMed  Google Scholar 

  25. Newman P.J., Newman D.K. 2004. Signal transduction pathways mediated by PECAM-1: New roles for an old molecule in platelet and vascular cell biology. Arterioscler. Thromb. Vasc. Biol. 23(6), 953–964.

    Article  Google Scholar 

  26. Kisucka J., Chauhan A.K., Patten I.S., Yesilaltay A., Neumann C., Van Etten R.A., Krieger M., Wagner D.D. 2008. Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ Res. 103(6), 598–605.

    Article  CAS  PubMed  Google Scholar 

  27. Metzger R., Bohle R.M., Chumachenko P., Danilov S.M., Franke F.E. 2000. CD143 in the development of atherosclerosis. Atherosclerosis. 150(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  28. Danilov S.M., Gordon K., Nesterovitch A.B., Lünsdorf H., Chen Z., Castellon M., Popova I.A., Kalinin S., Mendonca E., Petukhov P.A., Schwartz D.E., Minshall R.D., Sturrock E.D. 2011. An angiotensin I-converting enzyme mutation (Y465D) causes a dramatic increase in blood ACE via accelerated ACE shedding. PLoS One. 6(10), e25952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mutin M., Dignat-George F., Sampol J. 1997. Immunologic phenotype of cultured endothelial cells: Quantitative analysis of cell surface molecules. Tissue Antigens. 50(5), 449–458.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Additional information

Original Russian Text © I.V. Kudryavtsev, V.V.Garnyuk, A.D. Nadeev, N.V. Goncharov, 2013, published in Biologicheskie Membrany, 2013, Vol. 30, No. 5–6, pp. 438–444.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryavtsev, I.V., Garnyuk, V.V., Nadeev, A.D. et al. Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro. Biochem. Moscow Suppl. Ser. A 8, 97–102 (2014). https://doi.org/10.1134/S1990747813050103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747813050103

Keywords

Navigation