Skip to main content
Log in

Microdomain-forming proteins of different families in common signal pathways

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Lipid rafts are the lateral assemblies of cholesterol, sphingomyelin, glycosphingolipids, and specific proteins within the cell plasma membrane. These microdomains are involved in a number of important cellular processes including membrane rearrangement, protein internalization, signal transduction, and the entry of viruses into a cell. Some of the lipid rafts are stabilized by special microdomain-forming proteins such as caveolins, SPFH domain-containing superfamily, tetraspanins, galectins, which maintain the integrity of rafts and regulate many resident proteins, thereby participating in nearly all life processes of cells. However, such classes of microdomain-forming proteins are still considered separately from each other. In this review we have tried to perform a complex analysis of microdomain-forming proteins in cell regulation by the example of EGFR receptors, integrins, and matrix metalloproteinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolson G.L., Singer S.J. 1974. The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains. J. Cell Biol. 60, 236–248.

    Article  PubMed  CAS  Google Scholar 

  2. Simons K., Sampaio J.L. 2011. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697.

    Article  PubMed  CAS  Google Scholar 

  3. Lindner R., Naim H.Y. 2009. Domains in biological membranes. Exp. Cell Res. 315, 2871–2878.

    Article  PubMed  CAS  Google Scholar 

  4. Kirkham M., Nixon S.J., Howes M.T., Abi-Rached L., Wakeham D.E., Hanzal-Bayer M., Ferguson C., Hill M.M., Fernandez-Rojo M., Brown D.A., Hancock J.F., Brodsky F.M., Parton R.G. 2008. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci. 121, 2075–2086.

    Article  PubMed  CAS  Google Scholar 

  5. Razani B., Woodman S.E., Lisanti M.P. 2002. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431–467.

    Article  PubMed  CAS  Google Scholar 

  6. Williams T.M., Lisanti M.P. 2004. The caveolin proteins. Genome Biol. 5, 214.

    Article  PubMed  Google Scholar 

  7. Lisanti M.P., Scherer P.E., Tang Z., Sargiacomo M. 1994. Caveolae, caveolin and caveolin-rich membrane domains: A signalling hypothesis. Trends Cell Biol. 4, 231–235.

    Article  PubMed  CAS  Google Scholar 

  8. Bastiani M., Parton R.G. 2010. Caveolae at a glance. J. Cell Sci. 123, 3831–3836.

    Article  PubMed  CAS  Google Scholar 

  9. Ishikawa Y., Otsu K., Oshikawa J. 2005. Caveolin; different roles for insulin signal? Cell Signal. 17, 1175–1182.

    Article  PubMed  CAS  Google Scholar 

  10. Le Lay S., Blouin C.M., Hajduch E., Dugail I. 2009. Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim. Biophys. Acta. 1791, 514–518.

    Article  PubMed  CAS  Google Scholar 

  11. Huang S., Tian H., Chen Z., Yu T., Xu A. 2010. The evolution of vertebrate tetraspanins: Gene loss, retention, and massive positive selection after whole genome duplications. BMC Evol. Biol. 10, 306.

    Article  PubMed  CAS  Google Scholar 

  12. Levy S., Shoham T. 2005. Protein-protein interactions in the tetraspanin web. Physiology. 20, 218–224.

    Article  PubMed  CAS  Google Scholar 

  13. Yanez-Mo M., Barreiro O., Gordon-Alonso M., Sala-Valdes M., Sanchez-Madrid F. 2009. Tetraspaninenriched microdomains: A functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446.

    Article  PubMed  CAS  Google Scholar 

  14. Rivera-Milla E., Stuermer C.A., Malaga-Trillo E. 2006. Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: Convergent evolution of the SPFH domain. Cell Mol. Life Sci. 63, 343–357.

    Article  PubMed  CAS  Google Scholar 

  15. Browman D.T., Hoegg M.B., Robbins S.M. 2007. The SPFH domain-containing proteins: More than lipid raft markers. Trends Cell Biol. 17, 394–402.

    Article  PubMed  CAS  Google Scholar 

  16. Babuke T., Tikkanen R. 2007. Dissecting the molecular function of reggie/flotillin proteins. Eur. J. Cell Biol. 86, 525–532.

    Article  PubMed  CAS  Google Scholar 

  17. Stuermer C.A. 2010. The reggie/flotillin connection to growth. Trends Cell Biol. 20, 6–13.

    Article  PubMed  CAS  Google Scholar 

  18. Frick M., Bright N.A., Riento K., Bray A., Merrified C., Nichols B.J. 2007. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 17, 1151–1156.

    Article  PubMed  CAS  Google Scholar 

  19. Babuke T., Ruonala M., Meister M., Amaddii M., Genzler C., Esposito A., Tikkanen R. 2009. Heterooligomerization of reggie-1/flotillin-2 and reggie-2/flotillin-1 is required for their endocytosis. Cell Signal. 21, 1287–1297.

    Article  PubMed  CAS  Google Scholar 

  20. Aït-Slimane T., Galmes R., Trugnan G., Maurice M. 2009. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillindependent pathway in polarized hepatic cells. Mol. Biol. Cell. 20, 3792–3800.

    Article  PubMed  CAS  Google Scholar 

  21. Lajoie P., Goetz J.G., Dennis J.W., Nabi I.R. 2009. Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185, 381–385.

    Article  PubMed  CAS  Google Scholar 

  22. Boscher C., Dennis J.W., Nabi I.R. 2011. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 23, 383–392.

    Article  PubMed  CAS  Google Scholar 

  23. Williams T.M., Lisanti M.P. 2004. The Caveolin genes: From cell biology to medicine. Ann. Med. 36, 584–595.

    Article  PubMed  CAS  Google Scholar 

  24. Mercier I., Jasmin J.F., Pavlides S., Minetti C., Flomenberg N., Pestell R.G., Frank P.G., Sotgia F., Lisanti M.P. 2009. Clinical and translational implications of the caveolin gene family: Lessons from mouse models and human genetic disorders. Lab. Invest. 89, 614–623.

    Article  PubMed  CAS  Google Scholar 

  25. Cassoni P., Daniele L., Maldi E., Righi L., Tavaglione V., Novello S., Volante M., Scagliotti G.V., Papotti M. 2009. Caveolin-1 expression in lung carcinoma varies according to tumour histotype and is acquired de novo in brain metastases. Histopathology. 55, 20–27.

    Article  PubMed  Google Scholar 

  26. Wiechen K., Diatchenko L., Agoulnik A., Scharff K.M., Schober H., Arlt K., Zhumabayeva B., Siebert P.D., Dietel M., Schäfer R., Sers C. 2001. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am. J. Pathol. 159, 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  27. Bender F.C., Reymond M.A., Bron C., Quest A.F.G. 2000. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 60, 5870–5878.

    PubMed  CAS  Google Scholar 

  28. Hino M., Doihara H., Kobayashi K., Aoe M., Shimizu N. 2003. Caveolin-1 as tumor suppressor gene in breast cancer. Surg. Today. 33, 486–490.

    PubMed  CAS  Google Scholar 

  29. Wiechen K., Sers C., Agoulnik A., Arlt K., Dietel M., Schlag P.M., Schneider U. 2001. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am. J. Pathol. 158, 833–839.

    Article  PubMed  CAS  Google Scholar 

  30. Bayer-Garner I., Morgan M., Smoller B.R. 2002. Caveolin expression is common among benign and malignant smooth muscle and adipocyte neoplasms. Mod. Pathol. 1, 1–5.

    Article  Google Scholar 

  31. Arkhipova K.A., Rybko V.A., Zemlyakova V.V., Bliznyukov O.P., Martynkov D.V., Gubina G.I., Zborovskaya I.B. 2009. Caveolin-1 expression in soft tissue tumors. J. N.N. Blokhin RCRS RAMS (Rus.). 1, 4–9.

    Google Scholar 

  32. Colnot C., Fowlis D., Ripoche M.A., Bouchaert I., Poirier F. 1998. Embryonic implantation in galectin 1/ galectin 3 double mutant mice. Dev. Dyn. 211, 306–313.

    Article  PubMed  CAS  Google Scholar 

  33. Newlaczyl A.U., Yu L.G. 2011. Galectin-3 — a jack-of-all-trades in cancer. Cancer Lett. 313, 123–128.

    Article  PubMed  CAS  Google Scholar 

  34. Nangia-Makker P., Balan V., Raz A. 2008. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron. 1, 43–51.

    Article  PubMed  CAS  Google Scholar 

  35. Dumic J., Dabelic S., Flögel M. Galectin-3: An openended story. Biochim. Biophys. Acta. 1760, 616–635.

  36. Knobeloch K.P., Wright M.D., Ochsenbein A.F., Liesenfeld O., Löhler J., Zinkernagel R.M., Horak I., Orinska Z. 2000. Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol. Cell Biol. 220, 5363–5369.

    Article  PubMed  CAS  Google Scholar 

  37. Miyazaki T., Müller U., Campbell K.S. 1997. Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J. 16, 4217–4225.

    Article  PubMed  CAS  Google Scholar 

  38. van Soest S., Westerveld A., de Jong P.T., Bleeker-Wagemakers E.M., Bergen A.A. 1999. Retinitis pigmentosa: Defined from a molecular point of view. Surv. Ophthalmol. 43, 321–334.

    Article  PubMed  Google Scholar 

  39. Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C. 2000. Severely reduced female fertility in CD9-deficient mice. Science. 287, 319–321.

    Article  PubMed  Google Scholar 

  40. Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., Okabe M., Mekada E. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 287, 321–324.

    Article  PubMed  CAS  Google Scholar 

  41. Zemni R., Bienvenu T., Vinet M.C., Sefiani A., Carrié A., Billuart P., McDonell N., Couvert P., Francis F., Chafey P., Fauchereau F., Friocourt G., des Portes V., Cardona A., Frints S., Meindl A., Brandau O., Ronce N., Moraine C., van Bokhoven H., Ropers H.H., Sudbrak R., Kahn A., Fryns J.P., Beldjord C., Chelly J. 2000. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat. Genet. 24, 167–170.

    Article  PubMed  CAS  Google Scholar 

  42. Hazarika P., McCarty M.F., Prieto V.G., George S., Babu D., Koul D., Bar-Eli M., Duvic M. 2004. Upregulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res. 64, 7361–7369.

    Article  PubMed  CAS  Google Scholar 

  43. Lin C., Wu Z., Lin X., Yu C., Shi T., Zeng Y., Wang X., Li J., Song L. 2011. Knockdown of FLOT1 impairs cell proliferation and tumorigenicity in breast cancer through upregulation of FOXO3a. Clin. Cancer Res. 17, 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  44. Morrow I.C., Parton R.G. 2005. Flotillins and the PHB domain protein family: Rafts, worms and anaesthetics. Traffic. 6, 725–740.

    Article  PubMed  CAS  Google Scholar 

  45. Langhorst M.F., Reuter A., Stuermer C.A. 2005. Scaffolding microdomains and beyond: The function of reggie/flotillin proteins. Cell Mol. Life Sci. 62, 2228–2240.

    Article  PubMed  CAS  Google Scholar 

  46. Jang I.H., Kim J.H., Lee B.D., Bae S.S., Park M.H., Suh P.G., Ryu S.H. 2001. Localization of phospholipase C-gamma1 signaling in caveolae: Importance in EGF-induced phosphoinositide hydrolysis but not in tyrosine phosphorylation. FEBS Lett. 491, 4–8.

    Article  PubMed  CAS  Google Scholar 

  47. Couet J., Sargiacomo M., Lisanti M.P. 1997. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30429–30438.

    Article  PubMed  CAS  Google Scholar 

  48. Mineo C., James G.L., Smart E.J., Anderson R.G. 1996. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271, 11930–11935.

    Article  PubMed  CAS  Google Scholar 

  49. Mineo C., Gill G.N., Anderson R.G. 1999. Regulated migration of epidermal growth factor receptor from caveolae. J. Biol. Chem. 274, 30636–30643.

    Article  PubMed  CAS  Google Scholar 

  50. Glenney J.R. Jr., Zokas L. 1989. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 108, 2401–2408.

    Article  PubMed  CAS  Google Scholar 

  51. Lee H., Volonte D., Galbiati F., Iyengar P., Lublin D.M., Bregman D.B., Wilson M.T., Campos-Gonzalez R., Bouzahzah B., Pestell R.G., Scherer P.E., Lisanti M.P. 2000. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: Identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol. 14, 1750–1775.

    Article  PubMed  CAS  Google Scholar 

  52. Cao H., Courchesne W.E., Mastick C.C. 2002. A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: Recruitment of C-terminal Src kinase. J. Biol. Chem. 277, 8771–8774.

    Article  PubMed  CAS  Google Scholar 

  53. Galbiati F., Volonte D., Engelman J.A., Watanabe G., Burk R., Pestell R.G., Lisanti M.P. 1998. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17, 6633–6648.

    Article  PubMed  CAS  Google Scholar 

  54. Park W.Y., Park J.S., Cho K.A., Kim D.I., Ko Y.G., Seo J.S., Park S.C. 2000. Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J. Biol. Chem. 275, 20847–20852.

    Article  PubMed  CAS  Google Scholar 

  55. Engelman J.A., Zhang X.L., Razani B., Pestell R.G., Lisanti M.P. 1999. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J. Biol. Chem. 274, 32333–32341.

    Article  PubMed  CAS  Google Scholar 

  56. Khan E.M., Heidinger J.M., Levy M., Lisanti M.P., Ravid T., Goldkorn T. 2006. Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J. Biol. Chem. 281, 14486–14493.

    Article  PubMed  CAS  Google Scholar 

  57. Lajoie P., Partridge E.A., Guay G., Goetz J.G., Pawling J., Lagana A., Joshi B., Dennis J.W., Nabi I.R. 2007. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J. Cell. Biol. 179, 341–356.

    Article  PubMed  CAS  Google Scholar 

  58. Roepstorff K., Thomsen P., Sandvig K., van Deurs B. 2002. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J. Biol. Chem. 277, 18954–18960.

    Article  PubMed  CAS  Google Scholar 

  59. Matveev S.V., Smart E.J. 2002. Heterologous desensitization of EGF receptors and PDGF receptors by sequestration in caveolae. Am. J. Physiol. Cell Physiol. 282, C935–946.

    PubMed  CAS  Google Scholar 

  60. Pike L.J. 2005. Growth factor receptors, lipid rafts and caveolae: An evolving story. Biochim. Biophys. Acta. 1746, 260–273.

    Article  PubMed  CAS  Google Scholar 

  61. de Laurentiis A., Donovan L., Arcaro A. 2007. Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem. J. 1, 12–32.

    PubMed  Google Scholar 

  62. Murayama Y., Shinomura Y., Oritani K., Miyagawa J., Yoshida H., Nishida M., Katsube F., Shiraga M., Miyazaki T., Nakamoto T., Tsutsui S., Tamura S., Higashiyama S., Shimomura I., Hayashi N. 2008. The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J. Cell Physiol. 216, 135–143.

    Article  PubMed  CAS  Google Scholar 

  63. Chen S., Sun Y., Jin Z., Jing X. 2011. Functional and biochemical studies of CD9 in fibrosarcoma cell line. Mol. Cell Biochem. 350, 89–99.

    Article  PubMed  CAS  Google Scholar 

  64. Odintsova E., Sugiura T., Berditchevski F. 2000. Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr. Biol. 10, 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  65. Odintsova E., Voortman J., Gilbert E., Berditchevski F. 2003. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J. Cell Sci. 116, 4557–4566.

    Article  PubMed  CAS  Google Scholar 

  66. Wang X.Q., Yan Q., Sun P., Liu J.W., Go L., McDaniel S.M., Paller A.S. 2007. Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-1, and ganglioside. Cancer Res. 67, 9986–9995.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang X.A., Bontrager A.L., Hemler M.E. 2001. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J. Biol. Chem. 276, 25005–25013.

    Article  PubMed  CAS  Google Scholar 

  68. Kazarov A.R., Yang X., Stipp C.S., Sehgal B., Hemler M.E. 2002. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrindependent cellular morphology. J. Cell Biol. 158, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  69. Mannion B.A., Berditchevski F., Kraeft S.K., Chen L.B., Hemler M.E. 1996. Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J. Immunol. 157, 2039–2047.

    PubMed  CAS  Google Scholar 

  70. Berditchevski F. 2001. Complexes of tetraspanins with integrins: More than meets the eye. J. Cell Sci. 114, 4143–4151.

    PubMed  CAS  Google Scholar 

  71. Yang X., Wei L.L., Tang C., Slack R., Mueller S., Lippman M.E. 2001. Overexpression of KAI1 suppresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer Res. 61, 5284–5288.

    PubMed  CAS  Google Scholar 

  72. Hong I.K., Jin Y.J., Byun H.J., Jeoung D.I., Kim Y.M., Lee H. 2006. Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J. Biol. Chem. 281, 24279–24292.

    Article  PubMed  CAS  Google Scholar 

  73. Larsson C. 2006. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal. 18, 276–284.

    Article  PubMed  CAS  Google Scholar 

  74. Miranti C.K. 2009. Controlling cell surface dynamics and signaling: How CD82/KAI1 suppresses metastasis. Cell Signal. 21, 196–211.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang X.A., He B., Zhou B., Liu L. 2003. Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J. Biol. Chem. 278, 27319–27328.

    Article  PubMed  CAS  Google Scholar 

  76. Delaguillaumie A., Lagaudriere-Gesbert C., Popoff M.R., Conjeaud H. 2002. Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J. Cell Sci. 115, 433–443.

    PubMed  CAS  Google Scholar 

  77. Johnson J.L., Winterwood N., DeMali K.A., Stipp C.S. 2009. Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J. Cell Sci. 122, 2263–2273.

    Article  PubMed  CAS  Google Scholar 

  78. Baldwin G., Novitskaya V., Sadej R., Pochec E., Litynska A., Hartmann C., Williams J., Ashman L., Eble J.A., Berditchevski F. 2008. Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J. Biol. Chem. 283, 35445–35454.

    Article  PubMed  CAS  Google Scholar 

  79. Nishiuchi R., Sanzen N., Nada S., Sumida Y., Wada Y., Okada M., Takagi J., Hasegawa H., Sekiguchi K. 2005. Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc. Natl. Acad. Sci. USA. 102, 1939–1944.

    Article  PubMed  CAS  Google Scholar 

  80. Hasegawa M., Furuya M., Kasuya Y., Nishiyama M., Sugiura T., Nikaido T., Momota Y., Ichinose M., Kimura S. 2007. CD151 dynamics in carcinomastroma interaction: Integrin expression, adhesion strength and proteolytic activity. Lab. Invest. 87, 882–892.

    Article  PubMed  CAS  Google Scholar 

  81. Liu L., He B., Liu W.M., Zhou D., Cox J.V., Zhang X.A. 2007. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J. Biol. Chem. 282, 31631–31642.

    Article  PubMed  CAS  Google Scholar 

  82. Parat M.-O., Anand-Apte B., Fox P.L. 2003. Differential Caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol. Biol. Cell. 14, 3156–3168.

    Article  PubMed  CAS  Google Scholar 

  83. Beardsley A., Fang K., Mertz H., Castranova V., Friend S., Liu J. 2005. Loss of Caveolin-1 polarity impedes endothelial cell polarization and directional movement. J. Biol. Chem. 280, 3541–3547.

    Article  PubMed  CAS  Google Scholar 

  84. Grande-Garcia A., Echarri A., de Rooij J., Alderson N.B., Waterman-Storer C.M., Valdivielso J.M., del Pozo M.A. 2007. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 177, 683–694.

    Article  PubMed  CAS  Google Scholar 

  85. Wei Y., Yang X., Liu Q., Wilkins J.A., Chapman H.A. 1999. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144, 1285–1294.

    Article  PubMed  CAS  Google Scholar 

  86. Goetz J.G., Joshi B., Lajoie P., Strugnell S.S., Scudamore T., Kojic L.D., Nabi I.R. 2008. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J. Cell Biol. 180, 1261–1275.

    PubMed  CAS  Google Scholar 

  87. Bass R., Werner F., Odintsova E., Sugiura T., Berditchevski F., Ellis V. 2005. Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J. Biol. Chem. 280, 14811–14818.

    Article  PubMed  CAS  Google Scholar 

  88. Langhorst M.F., Jaegera F.A., Mueller S., Sven Hartmann L., Luxenhofer G., Stuermer C.A. 2008. Reggies/flotillins regulate cytoskeletal remodeling during neuronal differentiation via CAP/ponsin and Rho GTPases. Eur. J. Cell Biol. 87, 921–931.

    Article  PubMed  CAS  Google Scholar 

  89. Lypez-Casas P.P., del Mazo J. 2003. Regulation of flotillin-1 in the establishment of NIH-3T3 cell-cell interactions. FEBS Lett. 555, 223–228.

    Article  CAS  Google Scholar 

  90. Gialeli C., Theocharis A.D., Karamanos N.K. 2011. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16–27.

    Article  PubMed  CAS  Google Scholar 

  91. Yamaguchi H., Takeo Y., Yoshida S., Kouchi Z., Nakamura Y., Fukami K. 2009. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 69, 8594–8602.

    Article  PubMed  CAS  Google Scholar 

  92. Kim H.N., Chung H.S. 2008. Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity. BMB Rep. 41, 858–862.

    Article  PubMed  CAS  Google Scholar 

  93. Williams T.M., Medina F., Badano I., Hazan R.B., Hutchinson J., Muller W.J., Chopra N.G., Scherer P.E., Pestell R.G., Lisanti M.P. 2004. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem. 279, 51630–51646.

    Article  PubMed  CAS  Google Scholar 

  94. Han F., Zhu H.G. 2010. Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells. J. Surg. Res. 159, 443–450.

    Article  PubMed  CAS  Google Scholar 

  95. Jia L., Wang S., Zhou H., Cao J., Hu Y., Zhang J. 2006. Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int. J. Biochem. Cell Biol. 38, 1584–1593.

    Article  PubMed  CAS  Google Scholar 

  96. Tang W., Hemler M.E. 2004. Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/ EMMPRIN cell surface clustering. J. Biol. Chem. 279, 11112–11118.

    Article  PubMed  CAS  Google Scholar 

  97. Yanez-Mo M., Barreiro O., Gonzalo P., Batista A., Megías D., Genís L., Sachs N., Sala-Valdes M., Alonso M.A., Montoya M.C., Sonnenberg A., Arroyo A.G., Sanchez-Madrid F. 2008. MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood. 112, 3217–3226.

    Article  PubMed  CAS  Google Scholar 

  98. Lafleur M.A., Xu D., Hemler M.E. 2009. Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol. Biol. Cell. 20, 2030–2040.

    Article  PubMed  CAS  Google Scholar 

  99. Saito Y., Tachibana I., Takeda Y., Yamane H., He P., Suzuki M., Minami S., Kijima T., Yoshida M., Kumagai T., Osaki T., Kawase I. 2006. Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res. 66, 9557–9565.

    Article  PubMed  CAS  Google Scholar 

  100. Hong I.K., Kim Y.M., Jeoung D.I., Kim K.C., Lee H. 2005. Tetraspanin CD9 induces MMP-2 expression by activating p38 MAPK, JNK and c-Jun pathways in human melanoma cells. Exp. Mol. Med. 37, 230–239.

    Article  PubMed  CAS  Google Scholar 

  101. Park J.E., Chang W.Y., Cho M. 2009. Induction of matrix metalloproteinase-9 by galectin-7 through p38 MAPK signaling in HeLa human cervical epithelial adenocarcinoma cells. Oncol. Rep. 22, 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  102. Demers M., Magnaldo T., St-Pierre Y. 2005. A novel function for galectin-7: promoting tumorigenesis by up-regulating MMP-9 gene expression. Cancer Res. 65, 5205–5210.

    Article  PubMed  CAS  Google Scholar 

  103. Wu M.H., Hong T.M., Cheng H.W., Pan S.H., Liang Y.R., Hong H.C., Chiang W.F., Wong T.Y., Shieh D.B., Shiau A.L., Jin Y.T., Chen Y.L. 2009. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol. Cancer Res. 7, 311–318.

    Article  PubMed  CAS  Google Scholar 

  104. Prudova A., auf dem Keller U., Butler G.S., Overall C.M. 2010. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell Proteomics. 9, 894–911.

    Article  PubMed  CAS  Google Scholar 

  105. Dean R.A., Overall C.M. 2007. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell Proteomics. 6, 611–623.

    Article  PubMed  CAS  Google Scholar 

  106. Ochieng J., Fridman R., Nangia-Makker P., Kleiner D.E., Liotta L.A., Stetler-Stevenson W.G., Raz A. 1994. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry. 33, 14109–14114.

    Article  PubMed  CAS  Google Scholar 

  107. Ochieng J., Green B., Evans S., James O., Warfield P. 1998. Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochim. Biophys. Acta. 1379, 97–106.

    Article  PubMed  CAS  Google Scholar 

  108. Bist A., Fielding C.J., Fielding P.E. 2000. p53 regulates caveolin gene transcription, cell cholesterol, and growth by a novel mechanism. Biochemistry. 39, 1966–1972.

    Article  PubMed  CAS  Google Scholar 

  109. Gaudin J.C., Arar C., Monsigny M., Legrand A. 1997. Modulation of the expression of the rabbit galectin-3 gene by p53 and c-Ha-ras proteins and PMA. Glycobiology. 7, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  110. Dumic J., Lauc G., Flogel M. 2000. Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol. Biochem. 10, 149–158.

    Article  PubMed  CAS  Google Scholar 

  111. Deregowski V., Delhalle S., Benoit V., Bours V., Merville M.P. 2002. Identification of cytokine-induced nuclear factor-kappaB target genes in ovarian and breast cancer cells. Biochem. Pharmacol. 64, 873–881.

    Article  PubMed  CAS  Google Scholar 

  112. Li J., Peet G.W., Balzarano D., Li X., Massa P., Barton R.W., Marcu K.B. 2001. Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J. Biol. Chem. 276, 18579–18590.

    Article  PubMed  CAS  Google Scholar 

  113. Dong J.T., Isaacs W.B., Barrett J.C., Isaacs J.T. 1997. Genomic organization of the human KAI1 metastasissuppressor gene. Genomics. 41, 25–32.

    Article  PubMed  CAS  Google Scholar 

  114. Sasaki Y., Oshima Y., Koyama R., Maruyama R., Akashi H., Mita H., Toyota M., Shinomura Y., Imai K., Tokino T. 2008. Identification of flotillin-2, a major protein on lipid rafts, as a novel target of p53 family members. Mol. Cancer Res. 6, 395–406.

    Article  PubMed  CAS  Google Scholar 

  115. Wang J., Liu X., Ni P., Gu Z., Fan Q. 2010. SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem. Biophys. Res. Commun. 393, 291–296.

    Article  PubMed  CAS  Google Scholar 

  116. Cao S., Fernandez-Zapico M.E., Jin D., Puri V., Cook T.A., Lerman L.O., Zhu X.Y., Urrutia R., Shah V. 2005. KLF11-mediated repression antagonizes Sp1/sterol-responsive element-binding proteininduced transcriptional activation of caveolin-1 in response to cholesterol signaling. J. Biol. Chem. 280, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  117. Kathuria H., Cao Y.X., Ramirez M.I., Williams M.C. 2004. Transcription of the caveolin-1 gene is differentially regulated in lung type I epithelial and endothelial cell lines. A role for ETS proteins in epithelial cell expression. J. Biol. Chem. 279, 30028–30036.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Arkhipova.

Additional information

Original Russian Text © K.A. Arkhipova, I.B. Zborovskaya, 2012, published in Biologicheskie Membrany, 2012, Vol. 29, No. 6, pp. 387–399.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipova, K.A., Zborovskaya, I.B. Microdomain-forming proteins of different families in common signal pathways. Biochem. Moscow Suppl. Ser. A 7, 1–11 (2013). https://doi.org/10.1134/S1990747812060037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747812060037

Keywords

Navigation