Skip to main content
Log in

Regulation of TRPC6 channels by non-steroidal anti-inflammatory drugs

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Family focal segmental glomerulosclerosis (FSGS) is characterized by sclerosis and hyalinosis of particular loops of glomeruli and is one of the causes of the nephrotic syndrome. Certain mutations in the structure of TRPC6 channels are the genetic impetus for FSGS development resulting in podocytes functional abnormalities and various nephropathies. We have recently demonstrated that non-steroid antiinflammatory drugs (NSAID) ibuprofen and diclofenac decrease the activity of endogenous TRPC-like calcium channels in the podocytes of the freshly isolated rat glomeruli. It has also been shown that TRPC6 channels are expressed in the podocytes. In the current study we have functionally reconstituted TRPC6 channels in mammalian cells to investigate the effects of diclofenac on the activity of wild type TRPC6 channel and TRPC6P112Q channel containing a mutation in the N-terminus that was described in FSGS patients. Intracellular calcium level measurements in transfected cells revealed a more intensive carbachol-induced increase of calcium concentration in HEK-293 cells expressing TRPC6P112Q versus the cells expressing wild-type TRPC6. We also performed patch-clamp experiments to study TRPC6 channels reconstituted in Chinese hamster ovary (CHO) cell line and found that application of diclofenac (500 μM) acutely reduced single channel activity. Preincubation with diclofenac (100 μM) also decreased the whole-cell current in CHO cells overexpressing TRPC6P112Q. Therefore, our previously published data on the effects of NSAID on TRPC-like channels in the isolated rat glomeruli, along with this current investigation on the cultured overexpressed mammalian cells, allows hypothesizing that TRPC6 channels may be a target for NSAID that can be important in the treatment of FSGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shankland S.J. 2006. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147.

    Article  PubMed  CAS  Google Scholar 

  2. Heeringa S.F., Moller C.C., Du J., Yue L., Hinkes B., Chernin G., Vlangos C.N., Hoyer P.F., Reiser J., Hildebrandt F. 2009. A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE. 4, e7771.

    Article  PubMed  Google Scholar 

  3. Reiser J., Polu K.R., Moller C.C., Kenlan P., Altintas M.M., Wei C., Faul C., Herbert S., Villegas I., vila-Casado C., McGee, M., Sugimoto H., Brown D., Kalluri R., Mundel P., Smith P.L., Clapham D.E., Pollak M.R. 2005. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744.

    Article  PubMed  CAS  Google Scholar 

  4. Winn M.P., Conlon P.J., Lynn K.L., Farrington M.K., Creazzo T., Hawkins A.F., Daskalakis N., Kwan S.Y., Ebersviller S., Burchette J.L., Pericak-Vance M.A., Howell D.N., Vance J.M., Rosenberg P.B. 2005. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 308, 1801–1804.

    Article  PubMed  CAS  Google Scholar 

  5. De Miguel C., Lund H., Mattson D.L. 2011. High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension. 57, 269–274.

    Article  PubMed  Google Scholar 

  6. Haque M.Z., Ares G.R., Caceres P.S., Ortiz P.A. 2011. High salt differentially regulates surface NKCC2 expression in thick ascending limbs of Dahl salt-sensitive and salt-resistant rats. Am. J. Physiol. Renal Physiol. 300, F1096–F1104.

    Article  PubMed  CAS  Google Scholar 

  7. Hirano T., Ebara T., Furukawa S., Nagano S., Takahashi T. 1994. Mechanism of hypertriglyceridemia in dahl salt-sensitive rats, an animal model of spontaneous nephrotic syndrome. Metabolism. 43, 248–256.

    Article  PubMed  CAS  Google Scholar 

  8. Liu Y., Taylor N.E., Lu L., Usa K., Cowley A.W., Ferreri N.R., Yeo N.C., Liang M. 2010. Renal medullary microRNAs in Dahl salt-sensitive rats. Hypertension. 55, 974–982.

    Article  PubMed  CAS  Google Scholar 

  9. Kooijmans-Coutinho M.F., Tegzess A.M., Bruijn J.A., Florijn K.W., van Es L.A., van der Woude F.J. 1993. Indomethacin treatment of recurrent nephrotic syndrome and focal segmental glomerulosclerosis after renal transplantation. Nephrol. Dialysis Transplantation. 8, 469–473.

    CAS  Google Scholar 

  10. McCarthy E.T., Sharma M. 2002. Indomethacin protects permeability barrier from focal segmental glomerulosclerosis serum. Kidney Int. 61, 534–541.

    Article  PubMed  CAS  Google Scholar 

  11. Dorofeeva N.A., Barygin O.I., Staruschenko A., Bolshakov K.V., Magazanik L.G. 2008. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J. Neurochem. 106, 429–441.

    Article  PubMed  CAS  Google Scholar 

  12. Lee H.M., Kim H.I., Shin Y.K., Lee C.S., Park M., Song J.H. 2003. Diclofenac inhibition of sodium currents in rat dorsal root ganglion neurons. Brain Res. 992, 120–127.

    Article  PubMed  CAS  Google Scholar 

  13. Peretz A., Degani N., Nachman R., Uziyel Y., Gibor G., Shabat D., Attali B. 2005. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol. Pharmacol. 67, 1053–1066.

    Article  PubMed  CAS  Google Scholar 

  14. Pavlov T.S., Ilatovskaya D.V., Levchenko V., Mattson D.L., Roman R.J., Staruschenko A. 2011. Effects of cytochrome P450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). Am. J. Physiol. Renal Physiol. 301, F672–F681.

    Article  PubMed  CAS  Google Scholar 

  15. Li J., Xiang Y.Y., Ye L., Tsui L.C., MacDonald J.F., Hu J., Lu W.Y. 2008. Nonsteroidal anti-inflammatory drugs upregulate function of wild-type and mutant CFTR. Europ. Respir. J. 32, 334–343.

    Article  CAS  Google Scholar 

  16. Gu R.M., Wang W.H. 2002. Arachidonic acid inhibits K channels in basolateral membrane of the thick ascending limb. Am. J. Physiol. Renal Physiol. 283, F407–F414.

    PubMed  CAS  Google Scholar 

  17. Ilatovskaya D.V., Levchenko V., Ryan R.P., Cowley J., Staruschenko A. 2011. NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochem. Biophys. Res. Commun. 408, 242–247.

    Article  PubMed  CAS  Google Scholar 

  18. Goel M., Sinkins W.G., Zuo C.D., Estacion M., Schilling W.P. 2006. Identification and localization of TRPC channels in the rat kidney. Am. J. Physiol. Renal Physiol. 290, F1241–F1252.

    Article  PubMed  CAS  Google Scholar 

  19. Kim E.Y., varez-Baron C.P., Dryer S.E. 2009. Canonical transient receptor potential channel (TRPC) 3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: Role in BKCa trafficking to the surface of cultured Podocytes. Mol. Pharmacol. 75, 466–477.

    Article  PubMed  CAS  Google Scholar 

  20. Cowley A.W., Jr., Roman R.J., Kaldunski M.L., Dumas P., Dickhout J.G., Greene A.S., Jacob H.J. 2001. Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension. 37, 456–461.

    Article  PubMed  CAS  Google Scholar 

  21. Mattson D.L., Dwinell M.R., Greene A.S., Kwitek A.E., Roman R.J., Jacob H.J., Cowley A.W., Jr. 2008. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am. J. Physiol. Renal Physiol. 295, F837–F842.

    Article  PubMed  CAS  Google Scholar 

  22. Polichnowski A.J., Cowley A.W., Jr. 2009. Pressureinduced renal injury in angiotensin II versus norepinephrine-induced hypertensive rats. Hypertension. 54, 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  23. Bal M., Zhang J., Hernandez C.C., Zaika O., Shapiro M.S. 2010. Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-type) K+ channels. J. Neurosci. 30, 2311–2323.

    Article  PubMed  CAS  Google Scholar 

  24. Graham S., Ding M., Sours-Brothers S., Yorio T., Ma J.X., Ma R. 2007. Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am. J. Physiol. Renal Physiol. 293, F1381–F1390.

    Article  PubMed  CAS  Google Scholar 

  25. Graham S., Ding M., Ding Y., Sours-Brothers S., Luchowski R., Gryczynski Z., Yorio T., Ma H., Ma R. 2010. Canonical transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J. Biol. Chem. 285, 23466–23476.

    Article  PubMed  CAS  Google Scholar 

  26. Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  27. Cayouette S., Lussier M.P., Mathieu E.L., Bousquet S.M., Boulay G. 2004. Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq Protein-coupled receptor activation. J. Biol. Chem. 279, 7241–7246.

    Article  PubMed  CAS  Google Scholar 

  28. Estacion M., Sinkins W.G., Jones S.W., Applegate M.A.B., Schilling W.P. 2006. Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J. Physiol. 572, 359–377.

    Article  PubMed  CAS  Google Scholar 

  29. Shi J., Takahashi S., Jin X.H., Li Y.Q., Ito Y., Mori Y., Inoue R. 2007. Myosin light chain kinase-independent inhibition by ML-9 of murine TRPC6 channels expressed in HEK293 cells. Br. J. Pharmacol. 152, 122–131.

    Article  PubMed  CAS  Google Scholar 

  30. Hofmann T., Obukhov A.G., Schaefer M., Harteneck C., Gudermann T., Schultz G. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 397, 259–263.

    Article  PubMed  CAS  Google Scholar 

  31. Spernath A., Aserin A., Ziserman L., Danino D., Garti N. 2007. Phosphatidylcholine embedded microemulsions: Physical properties and improved Caco-2 cell permeability. J. Control Release. 119, 279–290.

    Article  PubMed  CAS  Google Scholar 

  32. Eckel J., Lavin P.J., Finch E.A., Mukerji N., Burch J., Gbadegesin R., Wu G., Bowling B., Byrd A., Hall G., Sparks M., Zhang Z.S., Homstad A., Barisoni L., Birbaumer L., Rosenberg P., Winn M.P. 2011. TRPC6 enhances angiotensin II-induced albuminuria. J. Am. Soc. Nephrol. 22, 526–535.

    Article  PubMed  CAS  Google Scholar 

  33. Hoenderop J.G., Voets T., Hoefs S., Weidema F., Prenen J., Nilius B., Bindels R.J. 2003. Homoand heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22, 776–785.

    Article  PubMed  CAS  Google Scholar 

  34. Kottgen M., Buchholz B., Garcia-Gonzalez M.A., Kotsis F., Fu X., Doerken M., Boehlke C., Steffl D., Tauber R., Wegierski T., Nitschke R., Suzuki M., Kramer-Zucker A., Germino G.G., Watnick T., Prenen J., Nilius B., Kuehn E.W., Walz G. 2008. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 182, 437–447.

    Article  PubMed  Google Scholar 

  35. Schaefer M. 2005. Homoand heteromeric assembly of TRP channel subunits. Pflügers Arch. 451, 35–42.

    Article  PubMed  CAS  Google Scholar 

  36. Staruschenko A., Jeske N.A., Akopian A.N. 2010. Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel. J. Biol. Chem. 285, 15167–15177.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Pavlov.

Additional information

Original Russian Text © D.V. Ilatovskaya, T.S. Pavlov, Y.A. Negulyaev, A. Staruschenko, 2012, published in Biologicheskie Membrany, 2012, Vol. 29, No. 3, pp. 200–208.

The article was translated by the authors.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilatovskaya, D.V., Pavlov, T.S., Negulyaev, Y.A. et al. Regulation of TRPC6 channels by non-steroidal anti-inflammatory drugs. Biochem. Moscow Suppl. Ser. A 6, 265–272 (2012). https://doi.org/10.1134/S1990747812030063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747812030063

Keywords

Navigation