Skip to main content
Log in

Store-operated calcium entry into SK-N-SH human neuroblastoma cells modeling huntington’s disease

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by expansion of polyglutamine at the N-terminus of the huntingtin protein. Striatal medium spiny neurons (MSN) are the primary targets of HD pathology. In our study, a cellular model of HD was based on the human neuroblastoma cells SK-N-SH transfected with plasmid for expression of the mutant huntingtin protein Htt138Q. Expression of Htt138Q increased store-dependent calcium entry into SK-N-SH cells. EVP4593 reversibly blocked the abnormal store-dependent response, probably generated by the channels incorporating TRPC1 ( transient receptor potential canonical 1) subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vonsattel J.P., Myers R.H., Stevens T.J., Ferrante R.J., Bird E.D., Richardson E.P., Jr., 1985. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44(6), 559–577.

    Article  PubMed  CAS  Google Scholar 

  2. Tang T.-Sh., Tu H., Chan Edmond Y.W., Maximov A., Wang Zh., Wellington Cheryl L., Hayden M.R., Bezprozvanny I. 2003. Huntingtin and Huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) trisphosphate receptor type 1. Neuron. 39(2), 227–239.

    Article  PubMed  CAS  Google Scholar 

  3. Tang T.-Sh., Chen X., Liu J., Bezprozvanny I. 2007. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J. Neurosci. 27(30), 7899–7910.

    Article  PubMed  CAS  Google Scholar 

  4. Panov A.V., Gutekunst C.A., Leavitt B.R., Hayden M.R., Burke J.R., Strittmatter W.J., Greenamyre J.T. 2002. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5(8), 731–736.

    PubMed  CAS  Google Scholar 

  5. Choo Y.S., Johnson G.V., MacDonald M., Detloff P.J., Lesort M. 2004. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13(14), 1407–1420.

    Article  PubMed  CAS  Google Scholar 

  6. Bouron A., Altafaj X., Boisseau S., De Waard M. 2005. A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice. Brain Res. Dev. Brain Res. 159(1), 64–71.

    Article  PubMed  CAS  Google Scholar 

  7. Tobe M., Isobe Y., Tomizawa H., Nagasaki T., Takahashi H., Fukazawa T., Hayashi H. 2003. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-κB activation. Bioorg. Med. Chem. 11(3), 383–391.

    Article  PubMed  CAS  Google Scholar 

  8. Tobe M., Isobe Y., Tomizawa H., Nagasaki T., Takahashi H., Hayashi H. 2003. A novel structural class of potent inhibitors of NF-κB activation: Structure-activity relationships and biological effects of 6-aminoquinazoline derivatives. Bioorg. Med. Chem. 11(18), 3869–3878.

    Article  PubMed  CAS  Google Scholar 

  9. Hamill O.P., Sakmann B. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature. 294(5840), 462–464.

    Article  PubMed  CAS  Google Scholar 

  10. Okamura H., Rao A. 2001. Transcriptional regulation in lymphocytes. Curr. Opin. Cell Biol. 13(2), 239–243.

    Article  PubMed  CAS  Google Scholar 

  11. Stankunas K., Graef I.A., Neilson J.R., Park S.H., Crabtree G.R. 1999. Signaling through calcium, calcineurin, and NF-AT in lymphocyte activation development. Cold Spring Harb. Symp. Quant. Biol. 64, 505–516.

    Article  PubMed  CAS  Google Scholar 

  12. Clapham D.E. 2002 Sorting out MIC, TRP and CRAC ion channels. J. Gen. Physiol. 120(2), 217–220.

    PubMed  CAS  Google Scholar 

  13. Wu X., Babnigg G., Villereal M.L. 2000. Functional significance of human TRP1 and TRP3 in store-operated Ca2+ entry in HEK-293 cells. Am. J. Physiol. Cell Physiol. 278(3), 526–536.

    Google Scholar 

  14. Ambudkar I.S., Ong H.L., Liu X., Bandyopadhyay B., Cheng K.T. 2007. TRPCl: The link between functionally distinct store-operated calcium channels. Cell Calcium. 42(2), 213–223.

    Article  PubMed  CAS  Google Scholar 

  15. Salido G.M., Sage S.O., Rosado J.A. 2009. TRPC channels and store-operated Ca2+ entry. Biochem. Biophys. Acta. 1793(2), 223–230.

    Article  PubMed  CAS  Google Scholar 

  16. Riccio A., Medhurst A.D., Mattei C., Kelsell R.E., Calver A.R., Randall A.D., Benham C.D., Pangalos M.N. 2002. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109(1–2), 95–104.

    Article  PubMed  CAS  Google Scholar 

  17. Zeron M.M., Hansson O., Chen N., Wellington C.L., Leavitt B.R., Brundin P., Hayden M.R., Raymond L.A. 2002. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron. 33(6), 849–860.

    Article  PubMed  CAS  Google Scholar 

  18. Fan M.M., Fernandes H.B., Zhang L.Y., Hayden M.R., Raymond L.A. 2007. Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington’s disease. J. Neurosci. 27(14), 3768–3779.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang H., Li Q., Graham R.K., Slow E., Hayden M.R., Bezprozvanny I. 2008. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease. Neurobiol. Dis. 31(1), 80–88.

    Article  PubMed  CAS  Google Scholar 

  20. Glushankova L.N., Zimina O.A., Vigont V.A., Mozhaeva G.N., Bezprozvanny I.B., Kaznacheeva E.V. Changes in the store-dependent calcium influx in a cellular model of Huntington’s disease. Dokl. Biol. Sci. 433(6), 1–4.

  21. Khoshnan A., Ko J., Watkin E.E., Paige L.A., Reinhart P.H., Patterson P.H. 2004. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J. Neurosci. 24(37), 7999–8008.

    Article  PubMed  CAS  Google Scholar 

  22. Qin Z.H., Wang Y., Nakai M., Chase T.N. 1998. Nuclear factor-κB contributes to excitotoxin-induced apoptosis in rat striatum. Mol. Pharmacol. 53(1), 33–42.

    PubMed  CAS  Google Scholar 

  23. Nakai M., Qin Z.H., Chen J.F., Wang Y., Chase T.N. 2000. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-κB activation. J. Neurochem. 74(2), 647–658.

    Article  PubMed  CAS  Google Scholar 

  24. Qin Z.H., Wang Y., Chen R.W., Wang X., Ren M., Chuang D.M., Chase T.N. 2001. Prostaglandin A(1) protects striatal neurons against excitotoxic injury in rat striatum. J. Pharmacol. Exp. Ther. 297(1), 78–87.

    PubMed  CAS  Google Scholar 

  25. Berna-Erro A., Braun A., Kraft R., Kleinschnitz C., Schuhmann M.K., Stegner D., Wultsch T., Eilers J., Meuth S.G., Stoll G., Nieswandt B. 2009. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci. Signal. 2(93), ra67.

    Article  PubMed  Google Scholar 

  26. Hasan G., Venkiteswaran G. 2010. The enigma of store-operated Ca-entry in neurons: answers from the Drosophila flight circuit. Front. Neural. Circuits. 4, 10.

    Article  PubMed  Google Scholar 

  27. Gruszczynska-Biegala J., Pomorski P., Wisniewska M.B., Kuznicki J. 2011. Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLOS One. 6(4), e19285.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto S., Wajima T., Hara Y., Nishida M., Mori Y. 2007. Transient receptor potential channels in Alzheimer’s disease. Biochim. Biophys. Acta. 1772(8), 958–967.

    PubMed  CAS  Google Scholar 

  29. Selvaraj S., Sun Y., Singh B.B. 2010. TRPC channels and their implication in neurological diseases. CNS Neurol. Disord. Drug Targets. 9(1), 94–104.

    Article  PubMed  CAS  Google Scholar 

  30. Narayanan K.L., Irmady K., Subramaniam S., Unsicker K., von Bohlen und Halbach O. 2008. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci. Lett. 446(2-3), 117–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kaznacheyeva.

Additional information

Original Russian Text © V.A. Vigont, O.A. Zimina, L.N. Glushankova, I.B. Bezprozvanny, G.N. Mozhayeva, E.V. Kaznacheyeva, 2012, published in Biologicheskie Membrany, 2012, Vol. 29, Nos. 1–2, pp. 123–132.

The text was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigont, V.A., Zimina, O.A., Glushankova, L.N. et al. Store-operated calcium entry into SK-N-SH human neuroblastoma cells modeling huntington’s disease. Biochem. Moscow Suppl. Ser. A 6, 206–214 (2012). https://doi.org/10.1134/S199074781201014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781201014X

Keywords

Navigation