Skip to main content
Log in

The effects of the HDAC inhibitor sodium butyrate on the expression of repair genes Rad51 and XRCC5 in fibroblast lines mEras-Waf1+/+ and mEras-Waf1–/–

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Transformed mice fibroblasts with a knockout CDKN1A gene, which encodes р21/Waf1 protein (mEras-Waf1–/–cells), are characterized by a large number of single-strand DNA breaks and associated γ-H2A.X foci compared to the initial transformant line E1A+cHa-ras (mEras-Waf1+/+ cells). According to immunofluorescence and immunoblotting data, the nuclei of the cells from both studied lines mEras-Waf1+/+ and mEras-Waf1–/–contain significant amounts of Rad51 and Ku80 proteins, which participate in DNA repair, with a slight prevalence of Ku80 in CDKN1A knockout cells. Under a short-term effect of adriamycin, a DNA-damaging agent, on the cells of both lines, additional accumulation of Rad51 protein foci occurs in their nuclei. However, an HDAC inhibitor, sodium butyrate, notably decreases the contents of Rad51 and Ku80 proteins in both intact mEras-Waf1+/+ and mEras-Waf1–/–cells and cells treated with adriamycin. Results of RT-PCR and immunoblotting demonstrate that inhibiting effect of sodium butyrate (NaBut) becomes apparent at the level of Rad51 and XRCC5 gene transcription and at the level of translation of the respective repair proteins, Rad51 and Ku80. The observed suppressive effect of NaBut (HDAC inhibitor) on the components of DNA repair system can be partially explained by antiproliferative function of HDAC inhibitors. In addition, transcriptional activation of pluripotency genes Oct-4, Sox-2, and Klf4 was discovered in mEras-Waf1+/+ and mEras-Waf1–/–cells under the influence of NaBut, which implies that these genes are under negative control at the level of the chromatin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RT:

reverse transcription

PAGE:

polyacrylamide gel

PCR:

polymerase chain reaction

DDR:

DNA damage response

DSB:

double-strand breaks

HDAC:

histone deacetylases

NaBut:

sodium butyrate

NHEJ:

nonhomologous end joining

References

  • Abramova, M.V., Pospelova, T.V., Nikulenkov, F.P., Hollander, C.M., Fornace, A.J., Jr., and Pospelov, V.A., G1/S arrest induced by histone deacetylase inhibitor sodium butyrate in E1A + Ras-transformed cells is mediated through down-regulation of E2F activity and stabilization of beta-catenin, J. Biol. Chem., 2006, vol. 281, pp. 21040–21051.

    Article  CAS  PubMed  Google Scholar 

  • Adimoolam, S., Sirisawad, M., Chen, J., Thiemann, P., Ford, J.M., and Buggy, J.J., HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 19482–19487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambady, S., Malcuit, C., Kashpur, O., Kole, D., Holmes, W.F., Hedblom, E., Page, R.L., and Dominko, T., Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells, Int. J. Dev. Biol., 2010, vol. 54, pp. 1743–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avkin, S., Sevilya, Z., Toube, L., Geacintov, N., Chaney, S.G., Oren, M., and Livneh, Z., p53 and p21 regulate error-prone DNA repair to yield a lower mutation load, Mol. Cell., 2006, vol. 22, pp. 407–413.

    Article  CAS  PubMed  Google Scholar 

  • Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., Solier, S., and Pommier, Y., γH2AX and cancer, Nat. Rev. Cancer, 2008, vol. 8, pp. 957–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem., 1976, vol. 72, pp. 248-254.

    Article  CAS  PubMed  Google Scholar 

  • Cazzalini, O., Perucca, P., Savio, M., Necchi, D., Bianchi, L., Stivala, L.A., Ducommun, B., Scovassi, A.I., and Prosperi, E., Interaction of p21 (CDKN1A) with PCNA regulates the histone acetyltransferase activity of p300 in nucleotide excision repair, Nucleic Acids Res., 2008, vol. 36, pp. 1713–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzalini, O., Scovassi, A.I., Savio, M., Stivala, L.A., and Prosperi, E., Multiple roles of the cell cycle inhibitor p21 (CDKN1A) in the DNA damage response, Mutat. Res., 2010, vol. 704, pp. 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-S., Wang, Y.-C., Yang, H.-C., Huang P.-H., Kulp, S.K., Yang, C.-C., Lu, Y.-S., Matsuyama, S., Chen, C.-Y., and Chen, C.-S., Histone Deacetylase Inhibitors Sensitize Prostate Cancer Cells to Agents that Produce DNA Double-strand Breaks by Targeting Ku70 Acetylation, Cancer Res, 2007, vol. 67, pp. 5318–5327.

    Article  CAS  PubMed  Google Scholar 

  • Eot-Houllier, G., Fulcrand, G., Magnaghi-Jaulin, L., and Jaulin, C., Histone deacetylase inhibitors and genomic instability, Cancer Lett., 2009, vol. 274, pp. 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Herbig, U., Jobling, W.A., Chen, B.P., Chen, D.J., and Sedivy, J.M., Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and P21CIP1, but not P16INK4a, Mol. Cell., 2004, vol. 14, pp. 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Qin, K., Zhang, Y., Gong, J., Li, N., Lv, D., Xiang, R., and Tan, X., Downregulation of transcription factor Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells, Biochem. Biophys. Res. Commun., 2011, vol. 411, pp. 786–791.

    Article  CAS  PubMed  Google Scholar 

  • Koike, M., Yutoku, Y., and Koike, A., Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation, Biochem. Biophys. Res. Commun., 2011, vol. 412, pp. 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Kukushkin, A.N., Abramova, M.V., Svetlikova, S.B., Darieva, Z.A., Pospelova, T.V., and Pospelov, V.A., Downregulation of C-fos gene transcription in cells transformed by E1A and CHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at C-fos promoter, Oncogene, 2002, vol. 21, pp. 719–730.

    Article  CAS  PubMed  Google Scholar 

  • Kukushkin, A.N., Svetlikova, S.B., Amanzholov, R.A., and Pospelov, V.A., Anisomycin abrogates repression of protooncogene C-fos transcription in E1A+cHa-ras-transformed cells through activation of MEK/ERK kinase cascade, J. Cell. Biochem., 2008, vol. 103, pp. 1005–1012.

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T., Fritsch, E.E., and Sambrook, J., Molecular Cloning, Cold Spring Harbor Lab., 1982.

    Google Scholar 

  • Olive, P.L. and Banáth, J.P., The comet assay: a method to measure DNA damage in individual cells, Nat. Protoc., 2006, vol. 1, pp. 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Pospelova, T.V., Kisliakova, T.V., Medvedev, A.V., Svetlikova, S.B., and Pospelov, V.A., The characteristics of the transformed phenotype and the expression of indicator plasmids in the cells of rat embryonic fibroblasts immortalized by oncogene E1Aad5 and transformed by oncogenes E1Aad5+c-Ha-ras, Tsitologiia, 1990, vol. 32, no. 2, pp. 148–155.

    CAS  PubMed  Google Scholar 

  • Pospelova, T.V., Demidenko, Z.N., Bukreeva, E.I., Pospelov, V.A., Gudkov, A.V., and Blagosklonny, M.V., Pseudo-DNA damage response in senescent cells, Cell Cycle, 2009, vol. 8, pp. 4112–4118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raderschall, E., Bazarov, A., Cao, J., Lurz, R., Smith, A., Mann, W., Hans-Ropers, H., Sedivy, J.M., Golub, E.I., Fritz, E., and Haaf, T., Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis, J. Cell Sci., 2002, vol. 115, pp. 153–164.

    CAS  PubMed  Google Scholar 

  • Rodier, F., Muñoz, D.P., Teachenor, R., Chu, V., Le, O., Bhaumik, D., Coppé, J.P., Campeau, E., Beauséjour, C.M., Kim, S.H., Davalos, A.R., and Campisi, J., DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion, J. Cell Sci., 2011, vol. 124, pp. 68–81.

    Article  CAS  PubMed  Google Scholar 

  • Romanov, V.S., Abramova, M.V., Svetlikova, S.B., Bykova, T.V., Zubova, S.G., Aksenov, N.D., Fornace, A.J., Jr., Pospelova, T.V., and Pospelov, V.A., P21Waf1 is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate, Cell Cycle, 2010, vol. 9, pp. 1–11.

    Article  Google Scholar 

  • Romanov, V.S., Bardin, A.A., Zubova, S.G., Bykova, T.V., Pospelov, V.A., and Pospelova, T.V., P21Waf1 is required for complete oncogenic transformation of mouseembryo fibroblasts by E1Aad5 and C-Ha-ras oncogenes, Biochimie, 2011, vol. 93, pp. 1408–1414.

    Article  CAS  PubMed  Google Scholar 

  • Romanov, V.S., Pospelov, V.A., and Pospelova, T.V., Cyclin-dependent kinase inhibitor p21Waf1: up-to-date view on its role in senescence and oncogenesis, Biochemistry (Moscow), 2012, vol. 77, no. 6, pp. 575–584.

    Article  CAS  Google Scholar 

  • Shan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., Ma, L., Liu, J., Xu, S., Yan, X., Bie, P., Cui, Y., Bian, X.W., and Qian, C., Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma, Hepatology, 2012, vol. 56, pp. 1004–1014.

    Article  CAS  PubMed  Google Scholar 

  • Sineva, G.S. and Pospelov, V.A., Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells, Biol. Cell., 2010, vol. 102, pp. 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Suvorova, I.I., Kozhukharova, I.V., Nikolsky, N.N., and Pospelov, V.A., Activation of ATM/ATR signaling in human embryonic stem cells after DNA damage, Cell Tissue Biol., 2014, vol. 8, no. 2, pp. 122–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kukushkin.

Additional information

Original Russian Text © A.N. Kukushkin, S.B. Svetlikova, V.A. Pospelov, 2016, published in Tsitologiya, 2016, Vol. 58, No. 12, pp. 908–915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, A.N., Svetlikova, S.B. & Pospelov, V.A. The effects of the HDAC inhibitor sodium butyrate on the expression of repair genes Rad51 and XRCC5 in fibroblast lines mEras-Waf1+/+ and mEras-Waf1–/–. Cell Tiss. Biol. 11, 133–140 (2017). https://doi.org/10.1134/S1990519X1702002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1702002X

Keywords

Navigation