Skip to main content
Log in

The morphology of NCTC cell clone 929 after contact with type I collagen added to culture medium

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The morphometric characteristics of NCTC cell clone 929 were compared before and after coming into contact with type I collagen added to cultivation medium. The cells were plated onto plastic in the form of a colony. The day after seeding, the cultivation medium was replaced by the same medium complemented with 0.1% type I collagen. The cells were incubated in this medium for 30 min more and then washed out of collagen. Using time-lapse shooting, the cell image at the colony edge was recorded for 7 h. The area of the cells and the degrees of their spreading and polarization were measured. It is shown that the contact with collagen did not affect the cell area, decreased cell spreading, and sharply reduced the portion of polarized cells. These results probably show the sensitivity of NCTC cells to the presence of type I collagen in cultivation medium and suggest that collagen plays an active role in formation by cells of long filopodia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beningo, K.A., Dembo, M., and Wang, Y.L., Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 18024–18029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, S.S, Fitzgerald, W., Zimmerberg, J., Kleinman, H.K., and Margolis, L., Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation, Stem Cells, 2007, vol. 25, pp. 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Couchman, J.R., Höök, M., Rees, D.A., and Timpl, R., Adhesion, growth, and matrix production by fibroblasts on laminin substrates, J. Cell Biol., 1983, vol. 96, pp. 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Daley, W.P., Peters, S.B., and Larsen, M., Extracellular matrix dynamics in development and regenerative medicine, J. Cell Sci., 2008, vol. 121, pp. 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Grantham, J., Lassing, I., and Karlsson, R., Controlling the cortical actin motor, Protoplasma, 2012, vol. 249, pp. 1001–1015.

    Article  PubMed Central  PubMed  Google Scholar 

  • Green, J.A. and Yamada, K.M., Three-dimensional microenvironments modulate fibroblast signaling responses, Adv. Drug Deliv. Rev., 2007, vol. 59, pp. 1293–1298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanein, D. and Horwitz, A.R., The structure of cell-matrix adhesions: the new frontier, Curr. Opin. Cell Biol., 2012, vol. 24, pp. 134–140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harunaga, J.S. and Yamada, K.M., Cell-matrix adhesions in 3D, Matrix Biol., 2011, vol. 30, pp. 363–368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubmacher, D. and Apte, S.S., The biology of the extracellular matrix: novel insights, Curr. Opin. Rheumatol., 2013, vol. 25, pp. 65–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huttenlocher, A. and Horwitz, A.R., Integrins in cell migration, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, pp. 1–16.

    Article  Google Scholar 

  • Kadler, K.E., Hill, A., and Canty-Laird, E.G., Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators, Curr. Opin. Cell Biol., 2008, vol. 20, pp. 495–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kukhareva, L.V. and Krylova, T.A., Effect of type I collagen and fibronectin on cell morphology of human MSCs in vitro, Tsitologiia, 2013, vol. 55, no. 7, pp. 452–462.

    Google Scholar 

  • Kurihara, H. and Nagamune, T., Cell adhesion ability of artificial extracellular matrix proteins containing a long repetitive Arg-Gly-Asp sequence, J. Biosci. Bioeng., 2005, vol. 100, pp. 82–87.

    Article  CAS  PubMed  Google Scholar 

  • Kuz’minykh, E.V. and Petrov, Y.P., A simple model for the study of effects of the extracellular matrix on the cell morphology in vitro, Biochim. Biophys. Acta, 2004, vol. 1671, pp. 18–25.

    Article  PubMed  Google Scholar 

  • Mullins, R.D. and Hansen, S.D., In vitro studies of actin filament and network dynamics, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 6–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muroyama, A. and Lechler, T., Polarity and stratification of the epidermis, Semin. Cell Dev. Biol., 2012, vol. 23, pp. 890–896.

    Article  PubMed Central  PubMed  Google Scholar 

  • Petrov, Yu.P. and Tsupkina, N.V., Growth characteristics of CHO cells in culture, Cell Tissue Biol., 2012, vol. 7, no. 1, pp. 1–14.

    Google Scholar 

  • Petrov, Yu.P., Negulyaev, Yu.A., and Tsupkina, N.V., The position of cleavage furrow in cultured L-929 and CHO Cells, Cell Tissue Biol., 2012, vol. 6, no. 1, pp. 73–81.

    Article  Google Scholar 

  • Rhee, S. and Grinnell, F., Fibroblast mechanics in 3D collagen matrices, Adv. Drug Deliv. Rev., 2007, vol. 59, pp. 1299–1305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhee, S., Fibroblasts in three dimensional matrices: cell migration and matrix remodeling, Exp. Mol. Med., 2009, vol. 41, pp. 858–865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoads, D.S. and Guan, J.L., Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules, Exp. Cell Res., 2007, vol. 313, pp. 3859–3867.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seda, T.R., Ghosh, S., Laha, M.M., Shevde, N.K, Daheron, L., Gimble, J., Gümüşderelioglu, M., and Kaplan, D.L., Comparative chondrogenesis of human cell sources in 3D scaffolds, J. Tissue Eng. Regen. Med., 2009, vol. 3, pp. 348–360.

    Article  Google Scholar 

  • Tzezana, R., Reznik, S., Blumenthal, J., Zussman, E., and Levenberg, S., Regulation of stem cell differentiation by control of retinoic acid gradients in hydrospun 3D scaffold, Macromol. Biosci., 2012, vol. 12, pp. 598–607.

    Article  CAS  PubMed  Google Scholar 

  • Weber, G.F., Bjerke, M.A., and DeSimone, D.W., Integrins and cadherins join forces to form adhesive networks, J. Cell Sci., 2011, vol. 124, pp. 1183–1193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfenson, H., Lavelin, I., and Geiger, B., Dynamic regulation of the structure and functions of integrin adhesions, Dev. Cell., 2013, vol. 24, pp. 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. and Svitkina, T., Filopodia initiation: focus on the Arp2/3 complex and formins, Cell Adh. Migr., 2011, vol. 5, pp. 402–408.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Petrov.

Additional information

Original Russian Text © Yu.P. Petrov, Yu.A. Negulyaev, N.V. Tsupkina, 2014, published in Tsitologiya, 2014, Vol. 56, No. 8, pp. 591–598.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, Y.P., Negulyaev, Y.A. & Tsupkina, N.V. The morphology of NCTC cell clone 929 after contact with type I collagen added to culture medium. Cell Tiss. Biol. 8, 478–487 (2014). https://doi.org/10.1134/S1990519X14060066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X14060066

Keywords

Navigation